15037

An Efficient Parallel Algorithm for Graph Isomorphism on GPU using CUDA

Min-Young Son, Young-Hak Kim, Byoung-Woo Oh
Dept. of Computer Engineering, Kumoh National Institute of Technology, Yangho-dong, Gumi, Gyeongbuk 730-701 Republic of Korea
International Journal of Engineering and Technology (IJET), Vol. 7 No. 5, 2015
@article{son2015efficient,

   title={An Efficient Parallel Algorithm for Graph Isomorphism on GPU using CUDA},

   author={Son, Min-Young and Kim, Young-Hak and Oh, Byoung-Woo},

   year={2015}

}

Download Download (PDF)   View View   Source Source   

145

views

Modern Graphics Processing Units (GPUs) have high computation power and low cost. Recently, many applications in various fields have been computed powerfully on the GPU using CUDA. In this paper, we propose an efficient parallel algorithm for graph isomorphism which runs on the GPU using CUDA for matching large graphs. Parallelization of a sequential graph isomorphism algorithm is one of the hardest problems because it includes inherently sequential characteristics. Our approach divides the given graphs into smaller blocks using a divide-and-conquer, and then maps the blocks to parallel processing units on the GPU. The smaller blocks are solved in individual processing units, and then the results are combined using hierarchical procedures. In the experiment, we used random graphs from vertices of small size to up to tens of thousands of vertices in order to solve efficiently graph isomorphism for large graphs. The experimental results show that the proposed approach brings a considerable improvement in performance and efficiency comparing to the CPU-based results. Our result also shows high performance, especially on large graphs.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
An Efficient Parallel Algorithm for Graph Isomorphism on GPU using CUDA, 5.0 out of 5 based on 1 rating

* * *

* * *

Follow us on Twitter

HGPU group

1671 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

338 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: