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ABSTRACT

It is widely believed that closed universes - those with a compact Cauchy

hypersurface - behave globally as the dust-filled Friedmann universe with S3 spatial
topology: start at an all-encompassing initial singularity, expand to a maximal
hypersurface, and recollapse to an all-encompassing final singularity. In reality, it is not
known if the generic S3 closed universe recollapses. In fact, I shall show that there are
even S3 Friedmann universes satisfying all the standard energy conditions (and with zero
cosmological constant) that expand forever. However, if a generic closed universe at
some point in its history attains a maximal hypersurface, then it does originate at an initial
all-encompassing initial singularity, and does recollapse to an all-encompassing final
singularity. But only certain spatial topologies admit maximal hypersurfaces, and hence
permit recollapse: roughly speaking, the only closed universes which can ever evolve

maximal hypersurfaces are those whose Cauchy hypersurfaces have topology S3 or S2 x

S1, or a more complicated topology formed from these two basic types by connected
summation and certain identifications. All known solutions to Einstein's vacuum

equations with S3 or S2 x S! Cauchy hypersurface topology recollapse, so I conjecture
that all vacuum solutions with these Cauchy hypersurface topologies recollapse. I shall
also state a recollapse conjecture for matter-filled spatially homogeneous closed
universes, and give a general recollapse theorem for Friedmann universes: if the positive
pressure criterion, the dominant energy condition and the matter regularity condition
hold, then an S3 Friedmann universe originates at an initial singularity, expands to a
maximal hypersurface, and recollapses to a final singularity. Counter-examples indicate
that this Friedmann recollapse theorem is more or less the most general recollapse
theorem for the Friedmann universe.

1. WHO CARES IF CLOSED UNIVERSES RECOLLAPSE?

Since this Symposium on Relativistic Astrophysics consists more of astro-
physicists than relativists, I should like to provide a justification for investigating the
Recollapse Problem to the former, who generally think the business of science is finding
an explanation of observed past or present phenonmena, and who often think that the
behavior of the universe in the far future is therefore irrelevant to science in general and to
their work in particular. There are at least three reasons for regarding the Recollapse
problem as important to physical cosmology.

The first is rather trivial: at some point in her career, every astrophysicist teaches
an elementary astronomy course, including some cosmology. The elementary texts
almost uniformly assert that closed universes, by which the texts usually mean universes

with S3 spatial topology, recollapse. In fact, it is not known if "realistic" S3 closed
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universes recollapse, where "realistic" means a universe which is inhomogeneous and
which contains the matter fields of contemporary particle physics. Furthermore, only
closed universes with certain very special spatial topologies can have a maximal hyper-
surface and hence recollapse: in particular, a closed universe with a T3 spatial topology
cannot admit a maximal hypersurface and hence (probably) must expand forever.

The second reason is that the early universe behavior of many quantum
cosmological models depend on their global temporal structure. For example, the Hartle-

Hawking model! in its simplest form postulates that the wave function of the universe is

defined globally on S4, and only when the densities are significantly below the Planck
density -- that is, far away from what classically would be the initial and final singular-

ities -- can the universe be described as topologically S3 x R1, and metrically spacetime.
The reason for limiting the domain of the wave function to a compact 4-manifold is to
eliminate the necessity for global boundary conditions; as Hawking puts it, the most
plausible boundary condition is that there is no boundary. But this compactness in 4
dimensions requires recollapse, for an ever-expanding universe is open in the future
temporal direction, and thus would require boundary conditions at future temporal
infinity. In a sense, these future boundary conditions are avoided in the Hartle-Hawking
model by identifying the high density future with the high density past (though "past" and
"future" lose their meaning in these high density regions1, in part because it is no longer
meaningful to talk about the trajectory of a single classical universe); the early universe
depends on the future because quantum mechanically (but not classically - see Hawking's
paper in these Proceedings), the past is the future. This identification can be carried out
only if we have recollapse. To the extent we are interested in whether the Hartle-Hawking
model correctly describes the early universe, we are interested in the Recollapse Problem.

The third reason is that the plausibility of the inflationary model of the universe
depends in part on whether closed universes recollapse. The inflationary model derives
its appeal by purporting to show that certain major features of the visible universe (the
fact that it is nearly flat, for example) are nearly independent of the initial conditions.
However, inflationary models will in fact be nearly independent of the initial conditions
only if they asymptotically approach the de Sitter state during the accelerating phase.
Whether or not this approach occurs is termed the "cosmic no hair conjecture”. As

pointed out by Barrow?2:3, attempts to prove no-hair theorems have assumed that the
spatial 3-curvature scalar is non-positive on the grounds that universes with positive 3-
curvature scalar recollapse. But in fact, I shall give below S3 Friedmann models (all S3
Friedmann models necessarily have positive 3-curvature scalar) which expand forever.
On the other hand, if more realistic S3 closed models do recollapse, it is possible that
generically they recollapse too soon for inflation to occcur, suggesting that inflation is
unlikely to occur closed universes.

My conventions will be those of Hawking and Ellis?. The cosmological constant
will be assumed to be zero. I shall in large part be summarizing work done jointly by
myself and J.D. Barrow3 and by myself, J.D. Barrow and G.J. Galloway®.

2. IMPLICATIONS OF MAXIMAL HYPERSURFACES

The first theorem establishes the necessity of all-encompassing initial and final
singularities in a universe with a compact maximal hypersurface. Recall that a spacelike

hypersurface S is said to be a maximal hypersurface if z2,, = 0 everywhere on S, where
z2is the unit normal to S. A singularity to the past of a spacetime point set P will be said
to be all-encompassing if every inextendible timelike curve A in I'(P) - i.e., in the past of
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P - has a proper time length less than a universal constant L (i.e., the length of A N I(P)
is less than L). An all-encompassing final singularity is defined analogously.

Theorem 1: Let S be a compact maximal Cauchy hypersurface. Then there is
an all-encompassing singularity to the past of S and an all-encompassing singularity to
the future of S, and further the length of every timelike curve in the entire spacetime is
less than a universal constant L, provided

(1) RypVaVb > 0, for all timelike vectors V3;
(2) At least one of the tensors ZCZdZ[aRb]cd[er], Zy:p, OF R,pz2zb, is non-zeroon S,
where z2 is the normal vector to S.

Theorem 1 was first stated and proved by Marsden and Tipler’. Condition (1),
the timelike convergence condition, merely says that gravity is always attractive.
Condition (2) says that somewhere on the maximal hypersurface, the gravitational tidal
forces are non-zero, or at least the hypersurface is not a hypersurface of time symmetry.
For vacuum spacetimes, a hypersurface S of time symmetry (z,.;, = 0 everywhere on S)
would imply that the future and past of S are identical. It is very unlikely that the
gravitational tidal forces are identically zero everywhere on S, so condition (2) is a
generic condition.

The next theorem shows that a maximal hypersurface will never evolve in some
universes with compact Cauchy hypersurfaces; only certain topologies admit maximal
hypersurfaces.

Theorem 2: If S is a spacelike compact orientable maximal hpersurface, then it must
have the topology

[S3]; #[S3], #..# [S3], # k(S2 x S1)

(where [S3]; is a manifold which is covered by a homotopy 3-sphere, "#" denotes the

connected sum, and k(S2 x S1) means the connected sum of k copies of S2x S,
provided the following hold:

(1) The Einstein equations without cosmological constant hold,

(2) the weak energy condition holds, and

(3) the induced metric on S is not flat.

In particular, since T3 cannot be so written, a closed universe whose Cauchy
hypersurface has topology T3 cannot evolve a maximal hypersurface. Theorem 2 was
first proved in 5 (see also 8). The Theorem is an application of a theorem of Schoen and

Yau9, later generalized by Gromov and Lawson!0. Witt!! has recently applied the
Schoen-Yau theorem to the existence of maximal hypersurfaces in asymptotically flat
space. The hypotheses and conclusions in Theorem 2 are weaker that those of the

equivalent theorem in 5 and 8 : in the latter, the manifold [S3]; is S3/P;, the quotient of S3
with P; , a subgroup of O(4) which acts standardly on S3. To obtain this stronger
conclusion, an additional hypothesis ruling out exotic differentiable structures was made;

in effect this added hypothesis ruled out homotopy spheres which are not spheres (i.e., it
explicitly ruled out manifolds which violate the Poincaré Conjecture), and it ruled out

more exotic identifications of S3 than S3/P;. (I am grateful to J. Friedman for
discussions on this point.) Schoen and Yau9 give other hypotheses which reduce [S3]; to
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S3/P;. The important point is that the only recollapsing universes withsimple spatial
topologies are those with either S3 or S2 x S! spatial topology.

3. RECOLLAPSE IN S3 FRIEDMANN UNIVERSES

The archetypical S3 closed universe is the closed Friedmann universe, so it is

interesting that there are S3 Friedmann models that expand forever but in which the matter
obeys all the standard energy conditions. To see this, recall that if the matter is a perfect

fluid with equation of state p = (y - 1)u, conservation of energy implies that p=
(3M/8nG)R-3Y, where M is a constant and R is the usual Friedmann scale factor. The
Friedmann constraint equation is thus

(R'/R)2 = M/R3Y - 1/R2 (1)
The homogeneity, isotropy, and S3 spatial topology imply u > 0 and M > 0. Clearly the
universe expands forever if y < 2/3 (if y= 2/3, M > 1, since the LHS of (1) is positive if
the universe is expanding initially). It is easily checked that if y = 2/3, the weak, strong,
and dominant energy conditions are satisfied.

If y = 2/3, the generic condition is not satisfied, but we can add dust satisfying
p= (3Mp/8nG)R-3 to the fluid having y = 2/3, with M and Mp chosen so that the
Friedmann constraint equation is

(R/R)2= -Mp/R + 1 )
which is the Friedmann equation for dust, but with k = -1 (the open Friedmann universe);
clearly such an S3 Friedmann universe expands forever, and it is easily checked that the
generic condition is satisfied, together with all the other above mentioned energy
conditions. What happens is this: when y < 1, the pressure is negative, and in general
relativity, negative pressure generates a repulsive gravitational force (this is why the
inflationary universe inflates; some of the fields now being considered by particle
physicists have strong negative pressures®). When y < 2/3, this repulsion overwhelms
the attractive force due to g > 0; i.e., the attractive force due to the positive spatial
curvature.

If negative pressures are eliminated, we can prove S3 Friedmann universes
recollapse:

Theorem 3: If the positive pressure criterion, the matter regularity condition, and the

dominant energy condition hold, then a Friedmann universe with S3 spatial topology
expands from an initial singularity to a maximal hypersurface, and then recollapses to a
final singularity.

Theorem 3 is proved in 6. Counter-examples® indicate that the hypotheses of
Theorem 3 cannot be significantly weakened. The positive pressure critierion of Collins
and Hawking!2 says that Ip; > 0, where p; are the principal pressures of the stress-
energy tensor. In the Friedmann universe, the 3 principal pressures are all equal, so the
criterion reduces to p > 0. In more general spacetimes, the positive pressure criterion is
much weaker than p; 2 0, i = 1,2,3; in fact, the latter condition is violated in certain
Bianchi type IX S3 universes containing electromagnetic fields®, but the postive pressure
criterion holds, and recollapse occurs. The marter regularity condition5 -- which, roughly
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speaking, asserts that the stress-energy tensor is well-behaved except at a p.p. curvature

singularity -- and the dominant energy condition are required to ensure that the pressure
doesn't blow up and stop the evolution before the maximal hypersurface is reached.

(Don't laugh -- this can actually happen in S3 Friedmann universes.)
4. CLOSED UNIVERSE RECOLLAPSE CONJECTURES

All known vacuum solutions to Einstein's equations with Cauchy hypersurface
topology S3 or S2 x S! are known® to recollapse, so I propose
p propo

Conjecture 1: All globally hyperbolic vacuum C2 maximally extended closed universes
with S3 or S2 x S1 spatial topology expand from an all-encompassing initial singularity to
a maximal hypersurface, and recollapse to an all-encompassing final singularity.

Examples indicate6 that the conditions on the matter tensor in Theorem 3 are
sufficient to obtain recollapse, at least in homogeneous universes, so I therefore propose

Conjecture 2: All globally hyperbolic C2 maximally extended spatially homogeneous
closed universes with S3 or S2 x S! spatial topology, and with stress-energy tensors
which obey

(1) the strong energy condition,

(2) the positive pressure criterion,

(3) the dominant energy condition, and

(4) the matter regularity condition,
expand from an all-encompassing initial singularity to a maximal hypersurface, and
recollapse to an all-encompassing final singularity.

I challenge the reader to prove these conjectures, or to give counter-examples.
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