
AWS Well-Architected Framework
October 2015

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 2 of 56

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 3 of 56

Contents

Abstract 3

Introduction 4

Definition of the AWS Well-Architected Framework 4

General Design Principles 6

The Four Pillars of the Well-Architected Framework 7

Security Pillar 7

Reliability Pillar 14

Performance Efficiency Pillar 19

Cost Optimization Pillar 26

Conclusion 32

Contributors 32

Appendix: Well-Architected Questions, Answers, and Best Practices 33

Abstract
This paper describes the AWS Well-Architected Framework, which enables

customers to assess and improve their cloud-based architectures and better

understand the business impact of their design decisions. We address general

design principles as well as specific best practices and guidance in four

conceptual areas that we define as the pillars of the Well-Architected Framework.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 4 of 56

Introduction
At Amazon Web Services (AWS) we understand the value in educating our

customers on architectural best practices for designing reliable, secure, efficient,

and cost-effective systems in the cloud. As part of this effort, we developed the

AWS Well-Architected Framework, which helps you to understand the pros and

cons of decisions you make while building systems on AWS. We believe that

having well-architected systems greatly increases the likelihood of business

success.

AWS Solutions Architects have years of experience architecting solutions across a

wide variety of business verticals and use cases, and we have helped design and

review thousands of customers’ architectures on AWS. From this, we have

identified best practices and core strategies for architecting systems in the cloud.

The AWS Well-Architected Framework documents a set of foundational

questions that allow you to understand if a specific architecture aligns well with

cloud best practices. The framework provides a consistent approach to evaluating

systems against the qualities you expect from modern cloud-based systems, and

the remediation that would be required to achieve those qualities. As the AWS

platform continues to evolve, and we continue to learn more from working with

our customers, we will continue to refine the definition of well-architected.

This paper is intended for those in technology roles, such as chief technology

officers (CTOs), architects, developers, and operations team members. After

reading this paper, you will understand AWS best practices and strategies to use

when designing a cloud architecture. This paper does not provide

implementation details or architectural patterns; however, it does include

references to appropriate resources for this information.

Definition of the AWS Well-Architected

Framework
Every day experts at AWS assist customers in architecting systems to take

advantage of best practices in the cloud. We work with you on making

architectural trade-offs as your designs evolve. As you deploy these systems into

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 5 of 56

live environments, we learn how well these systems perform, and the

consequences of those trade-offs.

Based on what we have learned we have created the AWS Well-Architected

Framework, which is a set of questions you can use to evaluate how well an

architecture is aligned to AWS best practices.

The AWS Well-Architected Framework is based on four pillars—security,

reliability, performance efficiency, and cost optimization, which we define as

follows:

Pillar Name Description

Security The ability to protect information, systems, and assets while
delivering business value through risk assessments and
mitigation strategies.

Reliability The ability of a system to recover from infrastructure or
service failures, dynamically acquire computing resources to
meet demand, and mitigate disruptions such as
misconfigurations or transient network issues.

Performance
Efficiency

The ability to use computing resources efficiently to meet
system requirements, and to maintain that efficiency as
demand changes and technologies evolve.

Cost Optimization The ability to avoid or eliminate unneeded cost or suboptimal
resources.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 6 of 56

General Design Principles
The Well-Architected Framework identifies a set of general design principles to

facilitate good design in the cloud:

• Stop guessing your capacity needs: Eliminate guessing your
infrastructure capacity needs. When you make a capacity decision before
you deploy a system, you might end up sitting on expensive idle resources
or dealing with the performance implications of limited capacity. With
cloud computing, these problems can go away. You can use as much or as
little capacity as you need, and scale up and down automatically.

• Test systems at production scale: In a traditional, non-cloud
environment, it is usually cost-prohibitive to create a duplicate
environment solely for testing. Consequently, most test environments are
not tested at live levels of production demand. In the cloud, you can create
a duplicate environment on demand, complete your testing, and then
decommission the resources. Because you only pay for the test
environment when it is running, you can simulate your live environment
for a fraction of the cost of testing on premises.

• Lower the risk of architecture change: Because you can automate
the creation of test environments that emulate your production
configurations, you can carry out testing easily. You can also remove the
test serialization that occurs in on-premises environments where teams
have to queue to use the test resources.

• Automate to make architectural experimentation easier:
Automation allows you to create and replicate your systems at low cost (no
manual effort). You can track changes to your automation, audit the
impact, and revert to previous parameters when necessary.

• Allow for evolutionary architectures: In a traditional environment,
architectural decisions are often implemented as a static, one-time event,
with a few major versions of a system during its lifetime. As a business and
its context continue to change, these initial decisions may hinder the
system’s ability to deliver changing business requirements. In the cloud,
the capability to automate and test on demand lowers the risk of impact
from design changes. This allows systems to evolve over time so that
businesses can take advantage of new innovations as a standard practice.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 7 of 56

The Four Pillars of the Well-Architected

Framework
Building a software system is a lot like constructing a building. If the foundation

is not solid there might be structural problems that undermine the integrity and

function of the building. When architecting technology solutions, if you neglect

the four pillars of security, reliability, performance efficiency, and cost

optimization it can become challenging to build a system that delivers on your

expectations and requirements. When you incorporate these pillars into your

architecture, it will help you produce stable and efficient systems. This will allow

you to focus on the other aspects of design, such as functional requirements.

This section describes each of the four pillars, and includes definitions, best

practices, questions, considerations, and key AWS services that are relevant.

Security Pillar
The Security pillar encompasses the ability to protect information, systems, and

assets while delivering business value through risk assessments and mitigation

strategies.

Design Principles

In the cloud, there are a number of principles that can help you strengthen your

system security.

 Apply security at all layers: Rather than just running security

appliances (e.g., firewalls) at the edge of your infrastructure, use firewalls

and other security controls on all of your resources (e.g., every virtual

server, load balancer, and network subnet).

 Enable traceability: Log and audit all actions and changes to your

environment.

 Automate responses to security events: Monitor and automatically

trigger responses to event-driven, or condition-driven, alerts.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 8 of 56

 Focus on securing your system: With the AWS Shared Responsibility

Model you can focus on securing your application, data, and operating

systems, while AWS provides secure infrastructure and services.

 Automate security best practices: Software-based security

mechanisms improve your ability to securely scale more rapidly and cost-

effectively. Create and save a custom baseline image of a virtual server, and

then use that image automatically on each new server you launch. Create

an entire infrastructure that is defined and managed in a template.

Definition

Security in the cloud is composed of four areas:

1. Data protection

2. Privilege management

3. Infrastructure protection

4. Detective controls

The AWS Shared Responsibility Model enables organizations that adopt the

cloud to achieve their security and compliance goals. Because AWS physically

secures the infrastructure that supports our cloud services, AWS customers can

focus on using services to accomplish their goals. The AWS cloud also provides

greater access to security data and an automated approach to responding to

security events.

Best Practices
Data Protection

Before architecting any system, foundational practices that influence security

should be in place. For example, data classification provides a way to categorize

organizational data based on levels of sensitivity; least privilege limits access to

the lowest level possible while still allowing normal functions; and encryption

protects data by way of rendering it unintelligible to unauthorized access. These

tools and techniques are important because they support objectives such as

preventing financial loss or complying with regulatory obligations.

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 9 of 56

Data protection involves using controls and patterns designed to keep your data

confidential while preserving its integrity and ensuring that it is available to you

when you need it.

In AWS, the following practices facilitate protection of data:

 AWS customers maintain full control over their data.

 AWS makes it easier for you to encrypt your data and manage keys,

including regular key rotation, which can be easily automated natively by

AWS or maintained by a customer.

 Detailed logging is available that contains important content, such as file

access and changes.

 AWS has designed storage systems for exceptional resiliency. As an

example, Amazon Simple Storage Service (S3) is designed for 11 nines of

durability. (For example, if you store 10,000 objects with Amazon S3, you

can on average expect to incur a loss of a single object once every

10,000,000 years.)

 Versioning, which can be part of a larger data lifecycle-management

process, can protect against accidental overwrites, deletes, and similar

harm.

 AWS never initiates the movement of data between regions. Content

placed in a region will remain in that region unless the customer explicitly

enable a feature or leverages a service that provides that functionality.

The following questions focus on considerations for data security (for a list of

security question, answers, and best practices, see the Appendix):

SEC 1. How are you encrypting and protecting your data at rest?

SEC 2. How are you encrypting and protecting your data in
transit?

AWS provides multiple means for encryption of data at rest and in transit. We

build features into our products and services that make it easier to encrypt your

data. For example, we have implemented Server Side Encryption (SSE)

for Amazon S3 to make it easier for you to store your data in an encrypted form.

http://aws.amazon.com/s3

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 10 of 56

You can also arrange for the entire HTTPS encryption and decryption process

(generally known as SSL termination) to be handled by Elastic Load Balancing.

Privilege management

Privilege management is a key part of an information security program; it

ensures that only authorized and authenticated users are able to access your

resources, and only in a manner that is intended. For example, an Access Control

List (ACL) is a list of access permissions attached to an object, Role-Based Access

Controls (RBAC) is a permission set that is aligned with an end user’s role or

function, and password management includes complexity requirements and

change intervals. These privilege-management elements are critical in an

information security architecture, as they represent the core concepts of user

authentication and authorization.

In AWS, privilege management is primarily supported by the AWS Identity and

Access Management (IAM) service, which allows customers to control access to

AWS services and resources for users. You can apply granular policies, which

assign permissions to a user, group, role, or resource. You also have the ability to

require strong password practices, such as complexity, re-use, and multi-factor

authentication (MFA), and you can use federation with your existing directory

service.

The following questions focus on privilege-management considerations for

security:

SEC 3. How are you protecting access to and use of the AWS
root account credentials?

SEC 4. How are you defining roles and responsibilities of system
users to control human access to the AWS Management
Console and APIs?

SEC 5. How are you limiting automated access (such as from
applications, scripts, or third-party tools or services) to
AWS resources?

SEC 6. How are you managing keys and credentials?

http://en.wikipedia.org/wiki/HTTP_Secure

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 11 of 56

It is critical to keep root account credentials protected, and to this end AWS

recommends attaching MFA to the root account and locking the credentials with

the MFA in a physically secured location. The IAM service allows you to create

and manage other (non-root) user permissions, as well as establish access levels

to resources.

Infrastructure protection

Infrastructure protection encompasses control methodologies, such as defense in

depth and multi-factor authentication, necessary to meet best practices and

industry or regulatory obligations. Use of these methodologies is critical for

successful ongoing operations in either the cloud or on-premises.

In AWS, you can implement stateful and stateless packet inspection, either using

AWS native technologies or by using partner products and services available

through the AWS Marketplace. You can also use Amazon Virtual Private Cloud

(VPC), to create a private, secured, and scalable environment in which you can

define your topology—including gateways, routing tables, and public and/or

private subnets.

The following questions focus on infrastructure-protection considerations for

security:

SEC 7. How are you enforcing network and host-level boundary
protection?

SEC 8. How are you enforcing AWS service level protection?

SEC 9. How are you protecting the integrity of the operating
systems on your Amazon EC2 instances?

Multiple layers of defense are advisable in any type of environment, and in the

case of infrastructure protection, many of the concepts and methods are valid

across cloud and on-premises models. Enforcing boundary protection,

monitoring points of ingress and egress, and comprehensive logging, monitoring,

and alerting are all essential to an effective information security plan.

As mentioned in the Design Principals section above, AWS customers are able to

tailor, or harden, the configuration of an EC2 instance, and persist this

configuration to an immutable Amazon Machine Image (AMI). Then, whether

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 12 of 56

triggered by Auto Scaling or launched manually, all new virtual servers

(instances) launched with this AMI receive the hardened configuration.

Detective Controls

You can use detective controls to detect or identify a security breach. They are a

normal part of governance frameworks, and can be used to support a quality

process, a legal compliance obligation, and/or threat identification and response

efforts. There are different types of detective controls. For example, inventorying

assets and their detailed attributes promotes more effective decision making (and

lifecycle controls) to help establish operational baselines. Or you can use internal

auditing, an examination of controls related to information systems, to ensure

that practices meet policies and requirements, and that you have set the correct

automated alerting notifications based on defined conditions. These controls are

important reactive factors that help organizations identify and understand the

scope of anomalous activity.

In AWS, the following services support detective controls:

 AWS CloudTrail – A web service that logs API calls, including the

identity of the call, the time of the call, source IP address, parameters, and

response elements.

 Amazon CloudWatch – A monitoring service for AWS resources that

logs aspects such as Amazon Elastic Compute Cloud (EC2) CPU, disk, and

network activity; Amazon Relational Database Service (RDS) database

instances; Amazon Elastic Block Store (EBS) volumes; and more.

CloudWatch provides the ability to alarm on these and other metrics.

 AWS Config – An inventory and configuration history service that

provides information about the configurations and changes in

infrastructure over time.

 Amazon Simple Storage Service (S3)– Using Amazon S3 data access

auditing, customers can configure Amazon S3 buckets to record the details

of access requests, including the type, resource, date, and time.

 Amazon Glacier– Customers can use the vault lock feature to preserve

mission-critical data with compliance controls designed to support

auditable long-term retention.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 13 of 56

The following question focuses on detective controls considerations for security:

SEC 10. How are you capturing and analyzing AWS logs?

Log management is important to a well-architected design for reasons ranging

from security/forensics to regulatory or legal requirements. AWS provides

functionality that makes log management easier to implement by giving

customers the ability to define a data-retention lifecycle, or define where data will

be preserved, archived, and/or eventually deleted. This makes predictable and

reliable data handling simpler and more cost effective.

Key AWS Services

The AWS service that is essential to security is AWS Identity and Access

Management (IAM), which allows you to securely control access to AWS services

and resources for your users. The following services and features support the four

areas of security:

Data protection: Services such as Elastic Load Balancing, Amazon Elastic

Block Store (EBS), Amazon Simple Storage Service (S3), and Amazon Relational

Database Service (RDS) include encryption capabilities to protect your data in

transit and at rest. AWS Key Management Service (KMS) makes it easier for

customers to create and control keys used for encryption.

Privilege management: IAM enables you to securely control access to AWS

services and resources. Multi-factor authentication (MFA), adds an extra layer of

protection on top of your user name and password.

Infrastructure protection: Amazon Virtual Private Cloud (VPC) lets you

provision a private, isolated section of the AWS cloud where you can launch AWS

resources in a virtual network.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 14 of 56

Detective controls: AWS CloudTrail records AWS API calls, AWS Config

provides a detailed inventory of your AWS resources and configuration, and

Amazon CloudWatch is a monitoring service for AWS resources.

Resources

Refer to the following resources to learn more about our best practices for

security.

Documentation & Blogs

 AWS Security Center

 AWS Compliance

 AWS Security Blog

Whitepapers

 AWS Security Overview

 AWS Security Best Practices

 AWS Risk and Compliance

Videos

 Security of the AWS Cloud

 Shared Responsibility Overview

Reliability Pillar
The Reliability pillar encompasses the ability of a system to recover from

infrastructure or service disruptions, dynamically acquire computing resources to

meet demand, and mitigate disruptions such as misconfigurations or transient

network issues.

Design Principles

In the cloud, there are a number of principles that can help you increase

reliability:

• Test recovery procedures: In an on-premises environment, testing is
often conducted to prove the system works in a particular scenario; testing

http://aws.amazon.com/security/
https://aws.amazon.com/compliance/
http://blogs.aws.amazon.com/security/
https://d0.awsstatic.com/whitepapers/Security/AWS%20Security%20Whitepaper.pdf
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://d0.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://www.youtube.com/watch?feature=player_embedded&v=OEK7mHn4JLs
https://www.youtube.com/watch?list=PLhr1KZpdzukeYKFGZtFZehwnR5rzeICoo&v=U632-ND7dKQ&feature=player_detailpage

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 15 of 56

is not typically used to validate recovery strategies. In the cloud, you can
test how your system fails, and you can validate your recovery procedures.
You can use automation to simulate different failures or to recreate
scenarios that led to failures before. This exposes failure pathways that you
can test and rectify before a real failure scenario, reducing the risk of
components failing that have not been tested before.

• Automatically recover from failure: By monitoring a system for key
performance indicators (KPIs), you can trigger automation when a
threshold is breached. This allows for automatic notification and tracking
of failures, and for automated recovery processes that work around or
repair the failure. With more sophisticated automation, it is possible to
anticipate and remediate failures before they occur.

• Scale horizontally to increase aggregate system availability:
Replace one large resource with multiple small resources to reduce the
impact of a single failure on the overall system. Distribute requests across
multiple, smaller resources to ensure that they don’t share a common
point of failure.

• Stop guessing capacity: A common cause of failure in on-premises
systems is resource saturation, when the demands placed on a system
exceed the capacity of that system (this is often the objective of denial of
service attacks). In the cloud, you can monitor demand and system
utilization, and automate the addition or removal of resources to maintain
the optimal level to satisfy demand without over- or under-provisioning.

Definition

Reliability in the cloud is composed of three areas:

1. Foundations
2. Change management
3. Failure management

To achieve reliability, a system must have a well-planned foundation and

monitoring in place, with mechanisms for handling changes in demand or

requirements. The system should be designed to detect failure and automatically

heal itself.

Best Practices
Foundations

Before architecting any system, foundational requirements that influence

reliability should be in place; for example, you must have sufficient network

bandwidth to your data center. These requirements are sometimes neglected

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 16 of 56

(because they are beyond a single project’s scope). This neglect can have a

significant impact on the ability to deliver a reliable system. In an on-premises

environment, these requirements can cause long lead times due to dependencies

and therefore must be incorporated during initial planning.

With AWS, most of these foundational requirements are already incorporated or

may be addressed as needed. The cloud is designed to be essentially limitless, so

it is the responsibility of AWS to satisfy the requirement for sufficient networking

and compute capacity, while you are free to change resource size and allocation,

such as the size of storage devices, on demand.

The following questions focus on foundational considerations for reliability (for a
full list of reliability questions, answers, and best practices, see the Appendix):

REL 1. How are you managing AWS service limits for your
account?

REL 2. How are you planning your network topology on AWS?

REL 3. Do you have an escalation path to deal with technical
issues?

AWS sets service limits (an upper limit on the number of each resource your team

can request) to protect you from accidently over-provisioning resources. You will

need to have governance and processes in place to monitor and change these

limits to meet your business needs. As you adopt the cloud, you may need to plan

integration with existing on-premises resources (a hybrid approach). A hybrid

model enables the gradual transition to an all-in, cloud approach over time, and

therefore it’s important to have a design for how your AWS and on-premises

resources will interact as a network topology. Finally, you will want to ensure

your IT team receives training and updated processes to support your public-

cloud usage, and that you have partner or support agreements in place when

appropriate.

Change Management

Being aware of how change affects a system allows you to plan proactively, and

monitoring allows you to quickly identify trends that could lead to capacity issues

or SLA breaches. In traditional environments, change-control processes are often

manual and must be carefully coordinated with auditing to effectively control

who makes changes and when they are made.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 17 of 56

Using AWS, you can monitor the behavior of a system and automate the response

to KPIs, for example, adding additional servers as a system gains more users. You

can control who has permission to make system changes and audit the history of

these changes.

The following questions focus on change-related considerations for reliability:

REL 4. How does your system adapt to changes in demand?

REL 5. How are you monitoring AWS resources?

REL 6. How are you executing change management?

When you architect a system to automatically add and remove resources in

response to changes in demand, this not only increases reliability but also

ensures that business success does not become a burden. With monitoring in

place, your team will be automatically alerted when KPIs deviate from expected

norms. Automatic logging of changes to your environment allows you to audit

and quickly identify actions that might have impacted reliability. Controls on

change management ensure that you can enforce the rules that deliver the

reliability you need.

Failure Management

In any system of reasonable complexity it is expected that failures will occur, and

it is generally of interest to know how to become aware of these failures, respond

to them, and prevent them from happening again.

In AWS, we can take advantage of automation to react to monitoring data. For

example, when a particular metric crosses a threshold, you can trigger an

automated action to remedy the problem. Also, rather than trying to diagnose

and fix a failed resource that is part of your production environment, you can

replace it with a new one and carry out the analysis on the failed resource out of

band. Since the cloud enables you to stand up temporary versions of a whole

system at low cost, you can use automated testing to verify full recovery

processes.

The following questions focus on failure-management considerations for

reliability:

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 18 of 56

REL 7. How are you backing up your data?

REL 8. How does your system withstand component failures?

REL 9. How are you planning for recovery?

Regularly back up your data, and test your backup files, to ensure you can recover

from both logical and physical errors. A key to managing failure is the frequent,

and automated testing of systems to failure and through recovery (ideally on a

regular schedule and also triggered after significant system changes). Actively

track KPIs, such as the recovery time objective (RTO) and recovery point

objective (RPO), to assess a system’s fitness (especially under failure-testing

scenarios) and to help you identify and mitigate single points of failure. The

objective is to thoroughly test your system-recovery processes so that you are

confident that you can recover all your data and continue to serve your

customers, even in the face of sustained problems. Your recovery processes

should be as well exercised as your normal production processes.

Key AWS Services

The AWS service that is key to ensuring reliability is Amazon CloudWatch, which

monitors run-time metrics. Other services and features that support the three

areas of Reliability are as follows:

Foundations: AWS Identity and Access Management (IAM) enables you to
securely control access to AWS services and resources. Amazon VPC lets you
provision a private, isolated section of the AWS cloud where you can launch AWS
resources in a virtual network.

Change management: AWS CloudTrail records AWS API calls for your
account and delivers log files to you for auditing. AWS Config provides a detailed
inventory of your AWS resources and configuration, and continuously records
configuration changes.

Failure management: AWS CloudFormation enables the template creation of
AWS resources and provisions them in an orderly and predictable fashion.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 19 of 56

Resources

Refer to the following resources to learn more about our best practices related to

reliability.

Video and Analyst Report

 Embracing Failure: Fault-Injection and Service Reliability

 Benchmarking Availability and Reliability in the Cloud

Documentation and Blogs

 Service Limits Documentation

 Service Limit Reports Blog Post

Whitepapers

 Backup Archive and Restore Approach Using AWS Whitepaper

 Managing your AWS Infrastructure at Scale Whitepaper

 AWS Disaster Recovery Whitepaper

 AWS Amazon VPC Connectivity Options Whitepaper

AWS Support

 AWS Premium Support

 Trusted Advisor

Performance Efficiency Pillar
The Performance Efficiency pillar focuses on the efficient use of computing

resources to meet requirements, and maintaining that efficiency as demand

changes and technologies evolve.

Design Principles

In the cloud, there are a number of principles that can help you achieve

performance efficiency:

 Democratize advanced technologies: Technologies that are difficult

to implement can become easier to consume by pushing that knowledge

and complexity into the cloud vendor’s domain. Rather than having your IT

team learn how to host and run a new technology, they can simply consume

it as a service. For example, NoSQL databases, media transcoding, and

https://www.youtube.com/watch?v=wrY7XoOnysg
https://d0.awsstatic.com/analyst-reports/Benchmarking%20Availability%20and%20Reliability%20in%20the%20Cloud_Nucleus%20Research_2014%20.pdf
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://aws.amazon.com/about-aws/whats-new/2014/06/19/amazon-ec2-service-limits-report-now-available/
http://d0.awsstatic.com/whitepapers/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf
http://d0.awsstatic.com/whitepapers/managing-your-aws-infrastructure-at-scale.pdf
http://media.amazonwebservices.com/AWS_Disaster_Recovery.pdf
http://media.amazonwebservices.com/AWS_Amazon_VPC_Connectivity_Options.pdf
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/trustedadvisor/

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 20 of 56

machine learning are all technologies that require expertise that is not

evenly dispersed across the technical community. In the cloud, these

technologies become services that your team can consume while focusing

on product development rather than resource provisioning and

management.

 Go global in minutes: Easily deploy your system in multiple regions

around the world with just a few clicks. This allows you to provide lower

latency and a better experience for your customers simply and at minimal

cost.

 Use server-less architectures: In the cloud, server-less architectures

remove the need for you to run and maintain servers to carry out

traditional compute activities. For example, storage services can act as

static websites, removing the need for web servers; and event services can

host your code for you. This not only removes the operational burden of

managing these servers, but also can lower transactional costs because

these managed services operate at cloud scale.

 Experiment more often: With virtual and automatable resources, you

can quickly carry out comparative testing using different types of instances,

storage, or configurations.

Definition

 Performance Efficiency in the cloud is composed of four areas:

1. Compute
2. Storage
3. Database
4. Space-time trade-off

Considerations within each of these areas include a) how to select the optimal

approach and resources, b) how to keep that approach current given evolving

cloud capabilities, c) how to monitor run-time performance against expectations,

and, finally, d) how the resources scale against demand.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 21 of 56

Best Practices
Compute

The optimal server configuration for a particular architecture may vary based on

application design, usage patterns, and configuration settings. Many systems use

different server configurations for various components and enable different

features to improve performance. Selecting the wrong server configuration for a

use case can lead to lower performance efficiency.

In AWS, servers are virtualized and, therefore, you can change their capabilities

with the click of a button or an API call. Because resource decisions are no longer

fixed, you can experiment with different server types. At AWS, these virtual

server instances come in different families and sizes, offering a wide variety of

capabilities such as SSDs and GPUs. In AWS, it is also possible to perform server-

less computing. For example, AWS Lambda allows you to execute code without

running an instance.

The following example questions focus on compute considerations (for a full list

of performance efficiency questions, answers, and best practices, see the

Appendix):

PERF 1. How do you select the appropriate instance type for
your system?

PERF 2. How do you ensure that you continue to have the most
appropriate instance type as new instance types and
features are introduced?

PERF 3. How do you monitor your instances post launch to
ensure they are performing as expected?

PERF 4. How do you ensure that the quantity of your instances
matches demand?

When selecting the instance types to use, it is important to have test data that

shows which instances types (or server-less approaches) match that workload

best. These tests should be repeatable (ideally part of the continuous delivery

(CD) pipeline) so that you can easily test new instance types or capabilities as

they become available. From an operational standpoint, you should have

monitoring in place to notify you of any degradation in performance.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 22 of 56

Storage

The optimal storage solution for a particular system will vary based on the kind of

access method (block, file, or object), patterns of access (random or sequential),

throughput required, frequency of access (online, offline, archival), frequency of

update (worm, dynamic), and availability and durability constraints. Well

architected systems use multiple storage solutions and enable different features

to improve performance.

In AWS, storage is virtualized and is available in a number of different types. This

makes it easier to match your storage methods more closely with your needs, and

also offers storage options that are not easily achievable with on-premises

infrastructure. For example, Amazon S3 is designed for 11 nines of durability. You

can also change from using magnetic hard drives (HDDs) to solid state drives

(SSDs), and easily move virtual drives from one instance to another in seconds.

The following example questions focus on storage considerations for

performance efficiency:

PERF 5. How do you select the appropriate storage solution for
your system?

PERF 6. How do you ensure that you continue to have the most
appropriate storage solution as new storage solutions
and features are launched?

PERF 7. How do you monitor your storage solution to ensure it
is performing as expected?

PERF 8. How do you ensure that the capacity and throughput
of your storage solutions matches demand?

When selecting a storage solution, it is important to have test data that shows

which storage solution will deliver the cost/value margin required for that

workload. These tests should be repeatable (ideally part of the CD pipeline) so

that you can easily test new storage solutions or capabilities as they become

available. The types of storage (EBS versus instance store, or HDD versus SSD)

used for different instances can substantially alter the performance efficiency of

your system. From an operational standpoint, you should have monitoring in

place to notify you of any degradation in performance.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 23 of 56

Database

The optimal database solution for a particular system can vary based on

requirements for consistency, availability, partition tolerance, and latency. Many

systems use different database solutions for various sub-systems and enable

different features to improve performance. Selecting the wrong database solution

and features for a system can lead to lower performance efficiency.

In AWS, Amazon Relational Database Service (RDS) provides a fully managed

relational database. With Amazon RDS you can scale your database's compute

and storage resources, often with no downtime. We also offer other database and

storage solutions. Amazon DynamoDB is a fully managed NoSQL database that

provides single-digit millisecond latency at any scale. Amazon Redshift is a

managed petabyte-scale data warehouse that allows you to change the number or

type of nodes as your performance or capacity needs change.

The following example questions focus on database considerations for

performance efficiency:

PERF 9. How do you select the appropriate database solution
for your system?

PERF 10. How do you ensure that you continue to have the most
appropriate database solution and features as new
database solution and features are launched?

PERF 11. How do you monitor your databases to ensure
performance is as expected?

PERF 12. How do you ensure the capacity and throughput of
your databases matches demand?

Although an organization’s database approach (RDBMS, NoSQL, etc.) has

significant impact on a system’s performance efficiency, it is often an area that is

chosen according to organizational defaults rather than through assessment.

During the build and deployment of your database solution, treat the database as

code to allow it to evolve over time rather than be a one-time fixed decision. Use

test data to identify which database solution matches each workload best. These

tests should be repeatable (ideally part of the CD pipeline) so that you can easily

test new database solutions or capabilities as they become available. For example,

assess whether read-only replicas improve performance efficiency without

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 24 of 56

violating other non-functional requirements. From an operational standpoint,

have monitoring in place to notify you of any degradation in performance.

Space-Time trade-off

When architecting solutions, there is a series of trade-offs where space (memory

or storage) is used to reduce processing time (compute), or time is used to reduce

space. You can also position resources or cached data closer to end users to

reduce time.

Using AWS, you can go global in minutes and deploy resources in multiple

locations across the globe to be closer to your end users. You can also dynamically

add read-only replicas to information stores such as database systems to reduce

the load on the primary database.

Use the global infrastructure of AWS to achieve lower latency and higher

throughput, and ensure that your data resides only in the region(s) you specify.

Networking solutions such as AWS Direct Connect are designed to provide

predictable latency between your on-premises network and AWS infrastructure.

AWS also offers caching solutions such as Amazon ElastiCache, which helps

improve efficiency, and Amazon CloudFront, which caches copies of your static

content closer to end-users.

The following example questions focus on space-time trade-offs for Performance

Efficiency:

PERF 13. How do you select the appropriate proximity and
caching solutions for your system?

PERF 14. How do you ensure that you continue to have the most
appropriate proximity and caching solutions as new
solutions are launched?

PERF 15. How do you monitor your proximity and caching
solutions to ensure performance is as expected?

PERF 16. How do you ensure that the proximity and caching
solutions you have matches demand?

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 25 of 56

Space-time trade-offs are required to deliver performance efficiency, and it is

important to have test data that shows which trade-offs match that workload

best. These tests should be repeatable (ideally part of the CD pipeline) so that you

can easily test new approaches or capabilities as they become available. For

example, test to see if using Amazon ElastiCache as a write-aside cache improves

performance efficiency without violating other non-functional requirements.

From an operational standpoint, you should have monitoring in place to notify

you of any degradation in performance. The architecture should scale with

demand and maintain its margin.

Key AWS Services

The key AWS service for performance efficiency is Amazon CloudWatch, which

monitors your resources and systems, providing visibility into your overall

performance and operational health. The following services are important in the

four areas of performance efficiency:

Compute: Auto Scaling is key to ensuring that you have enough instances to

meet demand and maintain responsiveness.

Storage: Amazon EBS provides a wide range of storage options (such as SSD

and PIOPS) that allow you to optimize for your use case. Amazon S3 provides

reduced-redundancy storage, lifecycle policies to Amazon Glacier (archival

storage), and server-less content delivery.

Database: Amazon RDS provides a wide range of database features (such as

provisioned IOPS, and read replicas) that allow you to optimize for your use case.

Amazon DynamoDB provides single-digit millisecond latency at any scale.

Space-time trade-off: AWS has regions across the globe, allowing you to

choose the optimal location for your resources, data, and processing. Use Amazon

CloudFront to cache content even closer to your users.

Resources

Refer to the following resources to learn more about our best practices related to

performance efficiency.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 26 of 56

Videos

 Performance Channel

 Performance Benchmarking on AWS

Documentation

 Amazon S3 Performance Optimization Documentation

 Amazon EBS Volume Performance Documentation

Cost Optimization Pillar
Use the Cost Optimization pillar to assess your ability to avoid or eliminate

unneeded costs or suboptimal resources, and use those savings on differentiated

benefits for your business. A cost-optimized system allows you to pay the lowest

price possible while still achieving your business objectives and meeting, or

exceeding, key requirements for the other Well-Architected pillars. You can

achieve cost optimization using techniques to select the appropriate architecture,

reduce unused resources, and select the most economical approach.

Design Principles

In the cloud you can follow a number of principles that to help you achieve cost

optimization:

• Transparently attribute expenditure: The cloud makes it easier to
identify the cost of a system and attribute IT costs to individual business
owners. This helps identify return on investment and, consequently, gives
those owners an incentive to optimize their resources and reduce costs.

• Use managed services to reduce cost of ownership: In the cloud,
managed services remove the operational burden of maintaining servers
for tasks such as sending email or managing databases. Additionally,
because managed services operate at cloud scale, they can offer a lower
cost per transaction or service.

• Trade capital expense for operating expense: Instead of investing
heavily in data centers and servers before you know how you’re going to
use them, pay only for the computing resources you consume, when you
consume them. For example, development and test environments are
typically only used for eight hours a day during the working week, so you
can stop these resources when not in use for a potential cost savings of
75% (40 hours versus 168 hours).

• Benefit from economies of scale: By using cloud computing, you may
achieve a lower variable cost than you could on your own because AWS

https://www.youtube.com/playlist?list=PLhr1KZpdzukfOfdstfSQVAvUrjBvnGd4i
https://www.youtube.com/watch?v=sHxLpuC2CUI
http://docs.aws.amazon.com/AmazonS3/latest/dev/PerformanceOptimization.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 27 of 56

can achieve higher economies of scale. Hundreds of thousands of
customers are aggregated in the AWS cloud, which translates into lower
pay-as-you-go prices.

• Stop spending money on data center operations: AWS does the
heavy lifting of racking, stacking, and powering servers, so you can focus
on your customers and business projects rather than on IT infrastructure.

Definition

Cost Optimization in the cloud is composed of four areas:

1. Matched supply and demand
2. Cost-effective resources
3. Expenditure awareness
4. Optimizing over time

As with the other pillars, there are trade-offs to consider, for example, whether to

optimize for speed to market or for cost. In some cases, it’s best to optimize for

speed—going to market quickly, shipping new features, or simply meeting a

deadline—rather than investing in upfront cost optimization. Design decisions

are sometimes guided by haste as opposed to empirical data, as the temptation

always exists to overcompensate “just in case” rather than spend time

benchmarking for the most cost-optimal deployment. This often leads to

drastically over-provisioned and under-optimized deployments. The following

sections provide techniques and strategic guidance for the initial and ongoing

cost optimization of your deployment.

Best Practices
Matched Supply and Demand

Optimally matching supply to demand delivers the lowest costs for a system, but

there also needs to be sufficient extra supply to allow for provisioning time and

individual resource failures. Demand can be fixed or variable, requiring metrics

and automation to ensure that management does not become a significant cost.

In AWS, you can automatically provision resources to match demand. Auto

Scaling and time-based, event-driven, and queue-based approaches allow you to

add and remove resources as needed. If you can anticipate changes in demand,

you can save more money and ensure your resources match your system needs.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 28 of 56

The following example questions focus on matched supply and demand for cost

optimization (for a full list of cost optimization questions, answers, and best

practices, see the Appendix):

COST 1. How do you make sure your capacity matches but does
not substantially exceed what you need?

COST 2. How are you optimizing your usage of AWS services?

Monitoring tools and regular benchmarking can help you achieve much greater

utilization of resources. The flexibility of on-demand computing, Auto Scaling,

and other automated deployment mechanisms facilitate a greater degree of

optimization, ensuring that you provision only the resources you need and are

able to scale horizontally.

Cost-Effective Resources

Using the appropriate instances and resources for your system is key to cost

savings. For example, a reporting process might take five hours to run on a

smaller server, but a larger server that is twice as expensive can do it in one hour.

Both jobs give you the same outcome, but the smaller server will incur more cost

over time.

A well architected system will use the most cost-effective resources, which can

have a significant and positive economic impact. You also have the opportunity to

use managed services to reduce costs. For example, rather than maintaining

servers to deliver email, you can use a service that charges on a per-message

basis.

AWS offers a variety of flexible and cost-effective pricing options to acquire

Amazon EC2 instances in a way that best fits your needs. On-Demand instances

allow you to pay for compute capacity by the hour, with no minimum

commitments required. Reserved Instances (RIs) allow you to reserve capacity

and offers savings of up to 75 percent off on-demand pricing. With Spot

instances, you can bid on unused Amazon EC2 capacity at significant discounts.

Spot instances are appropriate where the system can tolerate using a fleet of

servers where individual servers can come and go dynamically, such as when

using HPC and big data.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 29 of 56

The following example questions focus on selecting cost-effective resources for

cost optimization:

COST 3. Have you selected the appropriate resource types to
meet your cost targets?

COST 4. Have you selected the appropriate pricing model to
meet your cost targets?

COST 5. Are there managed services (higher-level services than
Amazon EC2, Amazon EBS, and Amazon S3) that you
can use to improve your ROI?

By using tools such as AWS Trusted Advisor to regularly review your AWS usage,

you can actively monitor your utilization and adjust your deployments

accordingly. You can also take advantage of managed AWS services, such as

Amazon RDS, Amazon Elastic MapReduce (EMR), and Amazon DynamoDB,

which can lower per-item and management costs. Consider CDN solutions such

as Amazon CloudFront to potentially reduce your costs associated with network

traffic.

Expenditure Awareness

The increased flexibility and agility that the cloud enables encourages innovation

and fast-paced development and deployment. It eliminates the manual processes

and time associated with provisioning on-premises infrastructure, including

identifying hardware specifications, negotiating price quotations, managing

purchase orders, scheduling shipments, and then deploying the resources.

However, the ease of use and virtually unlimited on-demand capacity may

require a new way of thinking about expenditures.

Many businesses are composed of multiple systems run by various teams. The

capability to attribute resource costs to the individual business or product owners

drives efficient usage behavior and helps reduce waste. Accurate cost attribution

also allows you to understand which products are truly profitable, and allows you

to make more informed decisions about where to allocate budget.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 30 of 56

The following example questions focus on expenditure awareness for cost

optimization:

COST 6. What access controls and procedures do you have in
place to govern AWS costs?

COST 7. How are you monitoring usage and spending?

COST 8. How do you decommission resources that you no
longer need, or stop resources that are temporarily
not needed?

COST 9. How do you consider data-transfer charges when
designing your architecture?

You can use cost allocation tags to categorize and track your AWS costs. When

you apply tags to your AWS resources (such as Amazon EC2 instances or Amazon

S3 buckets), AWS generates a cost allocation report with your usage and costs

aggregated by your tags. You can apply tags that represent business categories

(such as cost centers, system names, or owners) to organize your costs across

multiple services.

With this visibility of costs against tagged resources it becomes easier to identify

orphaned resources or projects that are no longer generating value to the

business and should be decommissioned. You can set up billing alerts to notify

you of predicted overspending, and the AWS Simple Monthly Calculator allows

you to calculate your data transfer costs.

Optimizing Over Time

As AWS releases new services and features, it is a best practice to reassess your

existing architectural decisions to ensure they continue to be the most cost

effective. As your requirements change, be aggressive in decommissioning

resources and entire services, or systems that you no longer require.

Managed services from AWS can often significantly optimize a solution, so it is

good to be aware of new managed services as they become available. For

example, running an Amazon RDS database can be cheaper than running your

own database on Amazon EC2.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 31 of 56

The following example question focuses on cost reassessments for cost

optimization:

COST 10. How do you manage and/or consider the adoption of
new services?

By regularly reassessing your deployment, it is often possible to utilize new AWS

services to lower your costs. Also, assess the applicability of newer services to

help save you money; for example, AWS RDS for Aurora could help you reduce

costs for relational databases.

Key AWS Services

The key AWS feature that supports cost optimization is cost allocation tags,

which help you to understand the costs of a system. The following services and

features are important in the four areas of cost optimization:

Matched supply and demand: Auto Scaling allows you to add or remove

resources to match demand without overspending.

Cost-effective resources: You can use Reserved Instances and prepaid

capacity to reduce your cost. AWS Trusted Advisor can be used to inspect your

AWS environment and find opportunities to save money.

Expenditure awareness: Amazon CloudWatch alarms and Amazon Simple

Notification Service (SNS) notifications will warn you if you go, or are forecasted

to go, over your budgeted amount.

Optimizing over time: The AWS Blog and What’s New section on the AWS

website are resources for learning about newly launched features and services.

AWS Trusted Advisor inspects your AWS environment and finds opportunities to

save money by eliminating unused or idle resources or committing to Reserved

Instance capacity.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 32 of 56

Resources

Refer to the following resources to learn more about AWS best practices for cost

optimization.

Video

 Cost Optimization on AWS

Documentation

 AWS Economics Center

Tools

 AWS Total Cost of Ownership (TCO) Calculator

 AWS Detailed Billing Reports

 AWS Simple Monthly Calculator

 AWS Cost Explorer

Conclusion
The AWS Well-Architected Framework provides architectural best practices

across four pillars for designing reliable, secure, efficient, and cost-effective

systems in the cloud. The framework provides a set of questions that allows you

to assess an existing or proposed architecture, and also a set of AWS best

practices for each pillar. Using the framework in your architecture will help you

produce stable and efficient systems, which allows you to focus on your

functional requirements.

Contributors
The following individuals and organizations contributed to this document:

 Philip Fitzsimons, Manager Solutions Architecture, Amazon Web Services

 Erin Rifkin, Senior Program Manager, Amazon Web Services

 Callum Hughes, Solutions Architect, Amazon Web Services

 Max Ramsay, Principal Security Solutions Architect, Amazon Web Services

 Scott Paddock, Security Solutions Architect, Amazon Web Services

https://www.youtube.com/watch?v=mqY8xfKU5yE
https://aws.amazon.com/economics/
http://aws.amazon.com/tco-calculator/
https://aws.amazon.com/blogs/aws/aws-detailed-billing-reports/
http://calculator.s3.amazonaws.com/index.html
http://aws.amazon.com/about-aws/whats-new/2014/04/08/introducing-cost-explorer-view-and-analyze-your-historical-aws-spend/

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 33 of 56

Appendix: Well-Architected Questions,

Answers, and Best Practices
This appendix contains the full list of Well-Architected questions and answers,

including best practices, organized by pillar:

Security Pillar
SEC 1. How are you encrypting and protecting your data at rest?

A traditional security control is to encrypt data at rest. AWS supports this

using both client-side (e.g., SDK-supported, OS-supported, Windows

Bitlocker, dm-crypt, Trend Micro SafeNet, etc.) and server-side (e.g., Amazon

S3). You can also use Server-Side Encryption (SSE) and Amazon Elastic

Block Store Encrypted Volumes, etc.

Best practices:

 Data at rest is encrypted using AWS service specific controls (e.g.,
Amazon S3 SSE, Amazon EBS encrypted volumes, Amazon Relational
Database Service (RDS) Transparent Data Encryption (TDE), etc.).

 Data at rest is encrypted using client side techniques.

 A solution from the AWS Marketplace or from an APN Partner.

SEC 2. How are you encrypting and protecting your data in
transit?

A best practice is to protect data in transit by using encryption. AWS supports

using encrypted end-points for the service APIs. Additionally, customers can

use various techniques within their Amazon EC2 instances.

Best practices:

 SSL enabled AWS APIs are used appropriately.

 SSL or equivalent is used for communication.

 VPN based solution.

 Private connectivity (e.g., AWS Direct Connect).

 AWS Marketplace solution is being used.

SEC 3. How are you protecting access to and use of the AWS root
account credentials?

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 34 of 56

The AWS root account credentials are similar to root or local admin in other

operating systems and should be used very sparingly. The current best

practice is to create AWS Identity and Access Management (IAM) users,

associate them to an administrator group, and use the IAM user to manage

the account. The AWS root account should not have API keys, should have a

strong password, and should be associated with a hardware multi-factor

authentication (MFA) device; this forces the only use of the root identity to be

via the AWS Management Console and does not allow it to be used for

application programming interface (API) calls. Note that some resellers or

regions do not distribute or support the AWS root account credentials.

Best practices:

 The AWS root account credentials are only used for only minimal
required activities.

 There is a MFA hardware device associated with the AWS root account.

 AWS Marketplace solution is being used.

SEC 4. How are you defining roles and responsibilities of system
users to control human access to the AWS Management
Console and API?

The current best practice is for customers to segregate defined roles and

responsibilities of system users by creating user groups. User groups can be

defined using several different technologies: Identity and Access

Management (IAM) groups, IAM roles for cross-account access, Web

Identities, via Security Assertion Markup Language (SAML) integration (e.g.,

defining the roles in Active Directory), or by using a third-party solution (e.g.,

Okta, Ping Identity, or another custom technique) which usually integrates via

either SAML or AWS Security Token Service (STS). Using a shared account is

strongly discouraged.

Best practices:

 IAM users and groups

 SAML integration

 Web Identity Federation

 AWS Security Token Service (STS)

 IAM roles for cross-account access

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 35 of 56

 A solution from the AWS Marketplace (e.g., Okta, Ping Identity, etc.) or
from an APN Partner

 Employee life-cycle policies are defined and enforced

 Users, groups, and roles are clearly defined and granted only the
minimum privileges needed to accomplish business requirements

SEC 5. How are you limiting automated access to AWS resources?
(e.g., applications, scripts, and/or third-party tool or
service)

Systematic access should be defined in similar ways as user groups are for

created for people. For Amazon EC2 instances, these groups are called IAM

roles for EC2. The current best practice is to use IAM roles for EC2 and an

AWS SDK or CLI, which has built-in support for retrieving the IAM roles for

EC2 credentials. Traditionally, user credentials are injected into EC2

instances, but hard-coding the credential into scripts and source code is

actively discouraged.

Best practices:

 IAM roles for Amazon EC2

 IAM user credential is used, but not hardcoded into scripts and
applications

 SAML integration

 AWS Security Token Service (STS)

 OS-specific controls are used for EC2 instances

 AWS Marketplace solution is being used

SEC 6. How are you managing keys and credentials?

Keys and credentials are secrets that should be protected, and an appropriate

rotation policy should be defined and used. The best practice is to not hard-

code these secrets into management scripts and applications, but it does often

occur.

Best practices:

 Appropriate key and credential rotation policy is being used.

 Use AWS CloudHSM.

 AWS server-side techniques are used with AWS managed keys (e.g.,
Amazon S3 SSE, Amazon EBS encrypted volumes, etc.).

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 36 of 56

 AWS Marketplace solutions (e.g., SafeNet, TrendMicro, etc.).

SEC 7. How are you enforcing network and host-level boundary
protection?

In on-premises datacenters, a DMZ approaches separate systems into trusted

and untrusted zones using firewalls. On AWS, both stateful and stateless

firewalls are used. Stateful firewalls are called security groups, and stateless

firewalls are called network Access Control Lists (ACL) that protect the

subnets in an Amazon Virtual Private Cloud (VPC). The current best practice

is to run a system in a VPC, and define the role-based security in Security

Groups (e.g., web tier, app tier, etc.), and the location-based security in

network ACLs (e.g., Elastic Load Balancing tier in one subnet per Availability

Zone , web tier in another subnet per Availability Zone, etc.).

Best practices:

 Security groups with minimal authorizations are used to enforce role-
based access.

 The system runs in one or more VPCs.

 Trusted VPC access is via a private mechanism (e.g., Virtual Private
Network (VPN), IPsec tunnel, AWS Direct Connect, AWS Marketplace
solution, etc.).

 Subnets and network ACLs are used appropriately.

 Host-based firewalls with minimal authorizations are used.

 Service-specific access controls are used (e.g., bucket policies).

 Private connectivity to a VPC is used (e.g., VPN, AWS Direct Connect,
VPC peering, etc.)

 Bastion host technique is used to manage the instances.

 Security testing is performed regularly.

 AWS Trusted Advisor checks are regularly reviewed.

SEC 8. How are you enforcing AWS service level protection?

Another best practice is to control access to resources. AWS Identity and

Access Management (IAM) allows various resource level controls to be

defined (e.g., use of encryption, time of day, source IP, etc.) and various

services allow additional techniques to be used (e.g., Amazon S3 bucket

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 37 of 56

policies, etc.). Additionally, customers can use various techniques within their

Amazon EC2 instances.

Best practices:

 Credentials configured with the least privilege.

 Separation of duties.

 Periodic auditing of permissions.

 Resource requirements are defined for sensitive API calls, such as

requiring MFA authentication and encryption.

 Service-specific requirements are defined and used.

 AWS Marketplace solution is being used.

SEC 9. How are you protecting the integrity of the operating
system on your Amazon EC2 instances?

Another traditional control is to protect the integrity of the operating system.

This is easily done in EC2 using traditional host-based techniques (e.g.,

OSSEC, Tripwire, Trend Micro Deep Security, etc.).

Best practices:

 File integrity controls are used for EC2 instances.

 Host-based intrusion detection controls are used for EC2 instances.

 Use of a solution from the AWS Marketplace or an APN Partner.

 Use of a custom AMI or configuration management tools (i.e., Puppet
or Chef) that is secured by default.

SEC 10. How are you capturing and analyzing AWS logs?

Capturing logs is critical for investigating everything from performance to

security incidents. The current best practice is for the logs to be periodically

moved from the source either directly into a log processing system (e.g.,

Splunk, Papertrail, etc.) or stored in an Amazon S3 bucket for later processing

based on business needs. Common sources of logs are AWS API and user-

related logs (e.g., AWS CloudTrail), AWS service-specific logs (e.g., Amazon

S3, Amazon CloudFront, etc.), Operating system-generated logs, and third-

party application-specific logs.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 38 of 56

Best practices:

 AWS CloudTrail.

 Elastic Load Balancing (ELB) logs.

 Amazon Virtual Private Cloud (VPC) filter logs.

 Amazon S3 bucket logs.

 Amazon CloudWatch logs.

 Other AWS service-specific log sources.

 Operating system or third-party application logs.

 AWS Marketplace solution is being used.

Reliability Pillar
REL 1. How are you managing AWS Service Limits for your

account?

AWS accounts are provisioned with default service limits to prevent new users

from accidentally provisioning more resources than they need. AWS

customers should evaluate their AWS service needs and request appropriate

changes to their limits for each region used.

Best practices:

 Monitor and manage limits Evaluate your potential usage on AWS,

increase your regional limits appropriately, and allow planned growth

in usage.

 Set up automated monitoring Implement tools, e.g., SDKs, to

alert you when thresholds are being approached.

 Be aware of fixed service limits Be aware of unchangeable service

limits and architected around these.

REL 2. How are you planning your network topology on AWS?

Applications can exist in one or more environments: EC2 Classic, VPC, or VPC

by Default. Network considerations such as system connectivity, EIP/public

IP address management, VPC/private address management, and name

resolution are fundamental to leveraging resources in the cloud. Well-planned

and documented deployments are essential to reduce the risk of overlap and

contention.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 39 of 56

Best practices:

 Highly available connectivity to AWS Multiple DX circuits,

multiple VPN tunnels, AWS Marketplace appliances.

 Highly available connectivity to the system Highly available

load balancing and/or proxy, DNS-based solution, AWS Marketplace

appliances, etc.

 Non-overlapping private IP ranges The use of your IP address

ranges and subnets in your virtual private cloud should not overlap

each other, other cloud environments, or your on-premises

environments.

 IP subnet allocation Individual Amazon VPC IP address ranges

should be large enough to accommodate an application’s requirements

including factoring in future expansion and allocation of IP addresses

to subnets across Availability Zones.

REL 3. Do you have an escalation path to deal with technical
issues?

Customers should leverage AWS Support or an AWS partner. Regular

interaction will help address and prevent known issues, knowledge gaps, and

design concerns. This will reduce the risk of implementation failures and also

large-scale outages.

Best practices:

 Planned Ongoing engagement /relationship with AWS Support or an APN

Partner.

 Leverage AWS Support APIs Integrate the AWS Support API with your

internal monitoring and ticketing systems.

REL 4. How does your system adapt to changes in demand?

A scalable system can provide elasticity to add and remove resources

automatically so that they closely match the current demand at any given

point in time.

Best practices:

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 40 of 56

 Automated scaling Use automatically scalable services, e.g., Amazon

S3, Amazon CloudFront, Auto Scaling, Amazon DynamoDB, AWS

Elastic Beanstalk, etc.

 Load Test Adopt a load testing methodology to measure if scaling

activity will meet application requirements.

REL 5. How are you monitoring AWS resources?

Logs and metrics are a powerful tool for gaining insight into the health of your

applications. You can configure your system to monitor logs and metrics and

send notifications when thresholds are crossed or significant events occur.

Ideally, when low-performance thresholds are crossed or failures occur, the

system will have been architected to automatically self-heal or scale in

response.

Best practices:

 Monitoring Monitor your applications with Amazon CloudWatch or

third-party tools.

 Notification Plan to receive notifications when significant events

occur.

 Automated Response Use automation to take action when failure is

detected, e.g., to replace failed components.

 Review Perform frequent reviews of the system based on significant

events to evaluate the architecture.

REL 6. How are you executing change management?

Change management of provisioned AWS resources and applications is

necessary to ensure that the applications and operating environment are

running known software and can be patched or replaced in a controlled

manner.

Best practices:

 CM Automated Automate deployments /patching.

REL 7. How are you backing up your data?

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 41 of 56

Back up data, applications, and operating environments (defined as operating

systems configured with applications) to meet requirements for mean time to

recovery (MTTR) and recovery point objectives (RPO).

Best practices:

 Data is Backed Up Back up important data using Amazon S3,

Amazon EBS snapshots, or third-party software to meet RPO.

 Automated Backups Use AWS features, AWS Marketplace solutions,

or third-party software to automate backups.

 Backups are Secured and/or Encrypted See the AWS Security

Best Practices whitepaper.

 Periodic Recovery Testing Validate that the backup process

implementation meets RTO and RPO through a recovery test.

REL 8. How does your system withstand component failures?

Do your applications have a requirement, implicit or explicit, for high

availability and low mean time to recovery (MTTR)? If so, architect your

applications for resiliency and distribute them to withstand outages. To

achieve higher levels of availability, this distribution should span different

physical locations. Architect individual layers (e.g., web server, database) for

resiliency, which includes monitoring, self-healing, and notification of

significant event disruption and failure.

Best practices:

 Load Balancing Use a load balancer in front of a pool of resources.

 Multi-AZ /Region Distribute applications across multiple

Availability Zones /regions.

 Auto Healing Use automated capabilities to detect failures and

perform an action to remediate.

 Monitoring Continuously monitor the health of your system.

 Notification Plan to receive notifications of any significant events.

REL 9. How are you planning for recovery?

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 42 of 56

Data recovery is critical should restoration of data be required from backup

methods. Your definition of and execution on the objectives, resources,

locations, and functions of this data must align with RTO and RPO objectives.

Best practices:

 Objectives Defined Define RTO and RPO.

 Disaster Recovery Establish a DR strategy.

 Configuration Drift Ensure that Amazon Machine Images (AMIs)

and the system configuration state are up-to-date at the DR

site/region.

 Service Limits Request an increase of service limits with the DR site

to accommodate a failover.

 DR Tested and Validated Regularly test failover to DR to ensure

RTO and RPO are met.

 Automated Recovery Implemented Use AWS and/or third-party

tools to automate system recovery.

Performance Pillar
PERF 1. How do you select the appropriate instance type for

your system?

Amazon EC2 offers a wide selection of instance types optimized to fit different

use cases. Instance types are composed of varying combinations of CPU,

memory, storage, and networking capacity and give you the flexibility to

choose the appropriate mix of resources for your applications. Each instance

type includes one or more instance sizes, allowing you to scale your resources

to the requirements of your target workload. AWS supports instance-less

architectures, such as AWS Lambda, that can radically change the

performance efficiency of a workload.

Best practices:

 Policy/Reference Architecture Select instance type and size based

on predicted resource needs with internal governance standards.

 Cost/Budget Select instance type and size based on predicted

resource needs with internal cost controls.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 43 of 56

 Benchmarking Load test a known workload on AWS and use that to

estimate the best selection – testing a known performance benchmark

vs. a known workload.

 Guidance from AWS or from a member of the AWS Partner

Network (APN) Make your selections based on best practice advice.

 Load Test Deploy the latest version of your system on AWS using

different instance types and sizes, use monitoring to capture

performance metrics, and then make a selection based on a calculation

of performance/cost.

PERF 2. How do you ensure that you continue to have the most
appropriate instance type as new instance types and
features are introduced?

AWS listens to customer feedback and continues to innovate with new

instance types and sizes, providing new combinations of CPU, memory,

storage, and networking capacity. This means that a new instance type might

be released that offers better performance efficiency than the one you

originally selected.

Best practices:

 Review Cyclically reselect new instance types and sizes based on

predicted resource needs.

 Benchmarking After each new instance type is released, carry out a

load test of a known workload on AWS, and use that to estimate the

best selection.

 Load Test After each relevant new instance type is released, deploy

the latest version of the system on AWS, use monitoring to capture

performance metrics and then make a selection based on a calculation

of performance/cost.

PERF 3. How do you monitor your instances post-launch to
ensure they are performing as expected?

System performance can degrade over time due to internal and/or external

factors. Monitoring the performance of systems allows you to identify this

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 44 of 56

degradation and remediate internal or external factors (such as the OS or

application load).

Best practices:

 Amazon CloudWatch monitoring Use CloudWatch to monitor

instances.

 Third-party monitoring Use third-party tools to monitor systems.

 Periodic review Periodically review your monitoring dashboards.

 Alarm-based notifications Receive an automatic alert from your

monitoring systems if metrics are out of safe bounds.

 Trigger-based actions Alarms cause automated actions to remediate

or escalate issues.

PERF 4. How do you ensure that the quantity of your instances
matches demand?

The amount of demand placed on a system often varies over different cycles:

product lifecycle, such as launch or growth; temporal cycles such a time of

day, day of the week, or month; unpredictable cycles such as social media

visibility; and predictable cycles such as television episodes. Insufficient

instances to meet your workload can degrade user experience and, at worst,

lead to system failure.

Best practices:

 Planned Plan based upon metrics and/or planned events.

 Automated - Scripted Use tools for automatic management.

 Automated - Auto Scaling Use Auto Scaling for automatic

management.

PERF 5. How do you select the appropriate storage solution for
your system?

AWS is designed to provide low-cost data storage with high durability and

availability. AWS offers storage choices for backup, archiving, and disaster

recovery, as well as block, file, and object storage.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 45 of 56

Best practices:

 Policy/Reference Architecture Select instance type and size based

on predicted resource need with internal governance standard.

 Cost/Budget Selecting instance type and size based on predicted

resource need based on internal cost controls.

 Benchmarking Load test a known workload on AWS and use that to

estimate the best selection – testing a known performance benchmark

vs. a known workload.

 Guidance from AWS or from an APN Partner Select a solution

based on best practice advice.

 Load Test Deploy the latest version of your system on AWS using

different instance types and sizes; use monitoring to capture

performance metrics; and then make selection based on a calculation

of performance/cost.

PERF 6. How do you ensure that you continue to have the most
appropriate storage solution as new storage solutions
and features are launched?

AWS listens to customer feedback and continues to innovate with new storage

solution and features, providing new combinations of capacity, throughput,

and durability. This means that a new storage solution might be released that

offers better performance efficiency that the one you originally selected.

Best practices:

 Review Cyclically reselect new instance type and size based on

predicted resource need.

 Benchmarking After each new instance type is released, carry out a

load test of a known workload on AWS, and use that to estimate the

best selection.

 Load Test After each relevant new instance type is released deploy the

latest version of the system on AWS, use monitoring to capture

performance metrics, and then make a selection based on a calculation

of performance/cost.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 46 of 56

PERF 7. How do you monitor your storage solution to ensure it is
performing as expected?

System performance can degrade over time, or for periods of time, due to

internal or external factors. Monitoring the performance of systems allows

you to identify this degradation and remediate the internal or external factors.

Best practices:

 Amazon CloudWatch monitoring Use CloudWatch to monitor

storage systems.

 Third party monitoring Use third party tools to monitor storage

systems.

 Periodic review Periodically review your monitoring dashboards.

 Alarm-based review Plan for your monitoring systems to

automatically alert you if metrics are out of safe bounds.

 Trigger-based actions Plan for alarms to cause automated actions to

remediate or escalate issues.

PERF 8. How do you ensure that the capacity and throughput of
your storage solutions matches demand?

The amount of demand placed on a system often varies over different cycles:

product lifecycle, such as launch or growth; temporal cycles such a time of

day, day of the week, or month; unpredictable cycles such social media

visibility; and predictable cycles such as television episodes. Insufficient

storage capacity or throughput to your workload can degrade user experience

and, at worst, lead to system failure.

Best practices:

 Reactive Manage manually based on metrics.

 Planned Plan future capacity and throughput based on metrics

and/or planned events.

 Automated Automate against metrics.

PERF 9. How do you select the appropriate database solution for
your system?

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 47 of 56

The optimal database solution for a particular system can vary based on

requirements for consistency, availability, partition tolerance, and latency.

Many systems use different database solutions for different sub-systems and

enable different features to improve performance. Selecting the wrong

database solution and features for a systems workload can lead to lower

performance efficiency.

Best practices:

 Policy/Reference Architecture Select instance type and size based

on predicted resource needs based on an internal governance standard.

 Cost/Budget Select instance type and size based on predicted

resource needs based on internal cost controls.

 Benchmarking Load test a known workload on AWS and use that to

estimate the best selection – testing a known performance benchmark

vs. a known workload.

 Guidance from AWS or from an APN Partner Select a solution

based on best practice advice.

 Load Test Deploy the latest version of your system on AWS using

different instance types and sizes, use monitoring to capture

performance metrics, and then make a selection based on a calculation

of performance/cost.

PERF 10. How do you ensure that you continue to have the most
appropriate database solution and features as new
database solution and features are launched?

AWS listens to customer feedback and continues to innovate with new

database solutions and features, providing new combinations of consistency,

availability, partition tolerance, and latency. This means that a new database

solution or feature might be released that offers better performance efficiency

than the one you originally selected.

Best practices:

 Review Cyclically reselect new instance type and size based on

predicted resource need.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 48 of 56

 Benchmarking After each new instance type is released, carry out a

load test of a known workload on AWS, and use that to estimate the

best selection.

 Load Test After each relevant new instance type is released, deploy

the latest version of the system on AWS, use monitoring to capture

performance metrics, and then make a selection based on a calculation

of performance/cost.

PERF 11. How do you monitor your databases to ensure
performance is as expected?

System performance can degrade over time due to internal or external factors.

Monitoring the performance of systems allows you to identify this

degradation and remediate the internal or external factors.

Best practices:

 Amazon CloudWatch monitoring Use CloudWatch to monitor

databases.

 Third-party monitoring Use third party tools to monitor databases.

 Periodic review Periodically review your monitoring dashboards.

 Alarm-based notifications Plan to have your monitoring systems

automatically alert you if metrics are out of safe bounds.

 Trigger-based actions Plan to have alarms cause automated actions

to remediate or escalate issues.

PERF 12. How do you ensure the capacity and throughput of your
databases matches demand?

The amount of demand placed on a system often varies over different cycles:

product lifecycle such as launch, growth, etc.; temporal cycles such a time of

day, weekday or month, etc.; unpredictable cycles such as seen with social

media; and predictable cycles such as television episodes. Having insufficient

database capacity and throughput to meet workload can degrade user

experience and, at its worst, lead to system failure.

Best practices:

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 49 of 56

 Planned Plan for future capacity and throughput based on metrics

and/or planned events.

 Automated Automate against metrics.

PERF 13. How do you select the appropriate proximity and
caching solutions for your system?

Physical distance, network distance, or long running requests can introduce

system delays. Unaddressed latency can tie up system resources for longer

than required, and introduce both internal and external performance

degradation. To reduce latency, consider the end-to-end performance of your

entire system from the end-user’s perspective, and look for opportunities to

adjust the physical proximity of your resources or cache solutions.

Best practices:

 Policy/Reference Architecture Select instance type and size based

on predicted resource need based on an internal governance standard.

 Cost/Budget Selecting instance type and size based on predicted

resource need based on internal cost controls.

 Benchmarking Load test a known workload on AWS and use that to

estimate the best selection; testing a known performance benchmark

vs. a known workload.

 Guidance from AWS or from an APN Partner Select a proximity

and caching solution based on best practice advice.

 Load Test Deploy the latest version of your system on AWS using

different instance types and sizes, use monitoring to capture

performance metrics, and then make a selection based on a calculation

of performance/cost.

PERF 14. How do you ensure you continue to have the most
appropriate proximity and caching solutions as new
solutions are launched?

AWS listens to customer feedback and continues to innovate with new

proximity and caching solutions, providing new combinations of proximity,

caching, and latency. This means that new proximity and caching solutions

might be released that offer better performance efficiency than the one you

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 50 of 56

originally selected. Look for opportunities to reduce latency and increase

performance throughout the system. For example, did you complete a one-

time optimization or are you continuing to optimize your system as demand

changes over time?

Best practices:

 Review Cyclically reselect a new instance type and size based on

predicted resource needs.

 Benchmarking After each new instance type is released, carry out a

load test of a known workload on AWS, and use that to estimate the

best selection.

 Load Test After each relevant new instance type is released deploy the

latest version of the system on AWS, use monitoring to capture

performance metrics, and then select based on a calculation of

performance/cost.

 Proactive Monitoring–Amazon Cloud Watch monitoring Use

Amazon CloudWatch to monitor proximity and caching solutions.

 Proactive Monitoring–Third-party monitoring Use third-party

tools to monitor proximity and caching solutions.

 Alarm-based notification Plan for your monitoring systems to

automatically alert you if metrics are out of safe bounds.

 Trigger-based actions Plan for alarms to cause automated actions to

remediate or escalate issues.

PERF 15. How do you monitor your proximity and caching
solutions to ensure performance is as expected?

System performance can degrade over time due to internal or external factors.

Monitoring the performance of systems allows you to identify this

degradation and remediate the internal or external factors.

Best practices:

 Amazon CloudWatch monitoring Use CloudWatch to monitor

instances.

 Third-party monitoring Use third-party tools to monitor systems.

 Periodic review Periodically review your monitoring dashboards.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 51 of 56

 Alarm-based notifications Plan for your monitoring systems to

automatically alert you if metrics are out of safe bounds.

 Trigger-based actions Plan for alarms to cause automated actions to

remediate or escalate issues.

PERF 16. How do you ensure the proximity and caching solutions
you have matches demand?

The amount of demand placed on a system often varies over different cycles:

product lifecycle such as launch, growth, etc.; temporal cycles such a time of

day, weekday or month, etc.; unpredictable cycles such as seen with social

media; and predictable cycles such as television episodes. Having the wrong

proximity and caching solutions to meet workload can degrade user

experience and, at its worst, lead to system failure. This is especially true if

you have, or plan to have, a global user base.

Best practices:

 Planned Plan future proximity or caching solutions based on metrics

and/or planned events.

 Monitor Monitor cache usage and demand over time.

 Periodic Review Review cache usage and demand over time.

Cost Optimization Pillar
COST 1. How do you make sure your capacity matches but does not

substantially exceed what you need?

For an architecture that is balanced in terms of spend and performance,

ensure that everything you pay for is used and avoid significantly

underutilized instances. A skewed utilization metric in either direction will

have an adverse impact on your business in either operational costs (degraded

performance due to over-utilization) or wasted AWS expenditures (due to

over-provisioning).

Best practices:

 Demand-based approach Use Auto Scaling to respond to variable
demand.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 52 of 56

 Queue-based approach Run your own Amazon Simple Queue Service
(SQS) queue and spin up/shut down instances based on demand.

 Time-based approach Examples: follow the sun, turn off Dev/Test
instances over the weekend, follow quarterly or annual schedules (e.g.,
Black Friday).

 Appropriately provisioned Appropriately provision throughput,
sizing, and storage for services such as Amazon DynamoDB, Amazon EBS
(provisioned IOPS), Amazon RDS, Amazon EMR, etc.

COST 2. How are you optimizing your usage of AWS services?

If you use application-level services, make sure that you use them well. For

example, introduce lifecycle policies to control Amazon S3 usage or leverage

services such as Amazon RDS and Amazon DynamoDB enable tremendous

flexibility. Checks for appropriate usage include verifying multi-AZ

deployments for Amazon RDS or verifying that provisioned IOPS are

applicable in your Amazon DynamoDB tables.

Best practices:

 Service-specific optimizations Examples include minimizing I/O for
Amazon EBS; avoiding uploading too many small files into Amazon S3;
using Spot instances extensively for Amazon EMR; etc.

COST 3. Have you selected the appropriate resources to meet

your cost targets?

Ensure that the Amazon EC2 instances you select are appropriate to the task

at hand. AWS encourages the use of benchmarking assessments to ensure that

the instance type you chose is optimized for its workload.

Best practices:

 Match instance profile based on need For example, match based on
workload and instance description –compute, memory, or storage
intensive.

 Third-party products For example, use third-party products such as
CopperEgg or New Relic to determine appropriate instance types.

 Amazon CloudWatch Use CloudWatch to determine processor load.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 53 of 56

 Custom Metrics Load custom memory scripts and inspect memory
usage using CloudWatch.

 Profiled Applications Profile your applications so you know when to
use which type of Amazon EBS (magnetic, general purpose (SSD),
provisioned IOPS). Use EBS-Optimized instances only when necessary.

COST 4. Have you selected the appropriate pricing model to meet
your cost targets?

Use the pricing model most appropriate for your workload to minimize

expense. The optimal deployment could be fully On-Demand instances, a mix

of On-Demand and Reserved Instances, or you might include Spot instances,

where applicable.

Best practices:

 Spot Use Spot instances for select workloads.

 Analyze Usage Regularly analyze usage and purchase Reserved
Instances accordingly.

 Sell Reserved Instances As your needs change, sell Reserved Instances
you no longer need on the Reserved Instances Marketplace, and purchase
others.

 Automated Action Have your architecture allows you to turn off unused
instances (e.g., use Auto Scaling to scale down during non-business
hours).

 Consider Cost Factor costs into region selection.

COST 5. Are there managed services (higher-level services than
Amazon EC2, Amazon EBS, Amazon S3) you can use to
improve your ROI?

Amazon EC2, Amazon EBS, and Amazon S3 are “building-block” AWS

services. Managed services such as Amazon RDS and Amazon DynamoDB are

“higher level” AWS services. By using these managed services, you can reduce

or remove much of your administrative and operational overhead, freeing you

to work on applications and business-related activities.

Best practices:

 Analyze Services Analyze application-level services to see which ones
you can use.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 54 of 56

 Consider appropriate databases Use Amazon Relational Database
Service (RDS) (Postgres, MySQL, SQL Server, Oracle Server) or Amazon
DynamoDB (or other key-value stores, NoSQL alternatives) where it’s
appropriate.

 Consider other application level services Use Amazon Simple
Queue Service (SQS), Amazon Simple Notification Service (SNS), Amazon
Simple Email Service (SES) where appropriate.

 Consider AWS CloudFormation, AWS Elastic Beanstalk, or AWS
Opsworks Use AWS CloudFormation templates / AWS Elastic Beanstalk
/AWS OpsWorks to achieve the benefits of standardization and cost
control.

COST 6. What access controls and procedures do you have in
place to govern AWS usage?

Establish policies and mechanisms to make sure that appropriate costs are

incurred while objectives are achieved. By employing a checks-and-balances

approach through tagging and IAM controls, you can innovate without

overspending.

Best practices:

 Establish groups and roles (Example: Dev/Test/Prod); use AWS
governance mechanisms such as IAM to control who can spin up instances
and resources in each group. (This applies to AWS services or third-party
solutions.)

 Track project lifecycle Track, measure, and audit the life cycle of
projects, teams, and environments to avoid using and paying for
unnecessary resources.

COST 7. How are you monitoring usage and spending?

Establish policies and procedures to monitor, control, and appropriately

assign your costs. Leverage AWS-provided tools for visibility into who is using

what—and at what cost. This will provide you with a deeper understanding of

your business needs and your teams’ operations.

Best practices:

 Tag all resources To be able to correlate changes in your bill to changes
in our infrastructure and usage.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 55 of 56

 Review Detailed Billing Reports Have a standard process to load and
interpret the Detailed Billing Reports.

 Cost-efficient architecture Have a plan for both usage and spending
(per unit – e.g., user, gigabyte of data).

 Monitoring Monitor usage and spend regularly using Amazon
CloudWatch or a third-party provider (examples: Cloudability,
CloudCheckr).

 Notifications Let key members of our team know if our spending moves
outside well-defined limits.

 Use AWS Cost Explorer

 Finance driven charge back method Use this to allocate instances
and resources to cost centers (e.g., tagging).

COST 8. Do you decommission resources that you no longer need
or stop resources that are temporarily not needed?

Ensure that you only pay for services that are being used. Implement change

control and resource management from project inception to end-of-life so that

you can identify necessary process changes or enhancements where

appropriate. Work with AWS Support for recommendations on how to

optimize your project for your workload: for example, when to use Auto

Scaling, AWS OpsWorks, AWS Data Pipeline, or the different Amazon EC2-

provisioning approaches.

Best practices:

 Design your system to gracefully handle instance termination as you
identify and decommission non-critical or unrequired instances or
resources with low utilization.

 Have a process in place to identify and decommission orphaned resources.

 Reconcile decommissioned resources based on either system or process.

COST 9. Did you consider data-transfer charges when designing
your architecture?

Ensure that you monitor data-transfer charges so that you can make

architectural decisions that might alleviate some of these costs. For example,

if you are a content provider and have been serving content directly from an

Amazon S3 bucket to your end users, you might be able to significantly reduce

your costs if you push your content to the Amazon CloudFront CDN.

Amazon Web Services – AWS Well-Architected Framework October 2015

Page 56 of 56

Remember that a small yet effective architectural change can drastically

reduce your operational costs.

Best practices:

 Use a CDN

 Architect to optimize data transfer (application design, WAN acceleration,
etc.).

 Analyze the situation and use AWS Direct Connect to save money and
improve performance.

 Balance the data transfer costs of your architecture with your high
availability (HA) and reliability needs.

COST 10. How do you manage and/or consider the adoption of

new services?

At AWS, our goal is to help you architect as optimally and cost effectively as

possible. New services and features might directly reduce your costs. A good

example of this is Amazon Glacier, which offers a low-cost, “cold” storage

solution for data that is infrequently accessed, yet must be retained for

business or legal reasons. Another example is Reduced Redundancy Storage

for Amazon S3, which allows you to elect to have fewer copies of your Amazon

S3 objects (lower levels of redundancy) for a reduced price. There are

implications to consider when making these decisions, for example: “What

does it mean to have fewer copies of my data?” or “Will I need to access this

data more than I realize?”

Best practices:

 Meet regularly with your AWS Solutions Architect, Consultant, or Account
Team, and consider which new services or features you could adopt to save
money.

