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INntroduction

Introduction

Goals

Off we go on our Adventure in Haskell Compilers! It will be intense, long, informative, and hopefully
fun.

It’s important to stress several points about the goals before we start our discussion:

a) This is not a rigorous introduction to type systems, it is a series of informal discussions of topics
structured around a reference implementation with links provided to more complete and rigorous
resources on the topic at hand. The goal is to give you an overview of the concepts and terminology
as well as a simple reference implementation to play around with.

b) None of the reference implementations are industrial strength, many of them gloss over funda-
mental issues that are left out for simplicity reasons. Writing an industrial strength programming
language involves work on the order of hundreds of person-years and is an enormous engineering
effort.

¢) You should not use the reference compiler for anything serious. It is intended for study and
reference only.

Throughout our discussion we will stress the importance of semantics and the construction of core calculi.
The frontend language syntax will be in the ML-family syntax out of convenience rather than principle.
Choice of lexical syntax is arbitrary, uninteresting, and quite often distracts from actual substance in
comparative language discussion. If there is one central theme it is that the design of the core calculus
should drive development, not the frontend language.

Prerequisites

An intermediate understanding at the level of the Real World Haskell book is recommended. We will shy
away from advanced type-level programming that is often present in modern Haskell and will make heavy
use of more value-level constructs. Although a strong familiarity with monads, monad transformers,
applicatives, and the standard Haskell data structures is strongly recommended.

Some familiarity with the standard 3rd party libraries will be useful. Many of these are briefly overviewed
in What I Wish I Knew When Learning Haskell.

In particular we will use:


http://dev.stephendiehl.com/hask/

® containers

® unordered-containers
* text

* mtl

* filepath

® directory

* process

* parsec

® pretty

* wl-pprint

* graphscc

* haskeline

* repline

® cereal

* deepseq

® uniqueid

* pretty-show

* uniplate

* optparse-applicative
® unbound-gener-ics
* language-c-quote
* bytestring

* hoopl

e fgl

* llvm-general

* smtLib

® sbv

In later chapters some experience with C, LLVM and x86 Assembly will be very useful, although not
strictly required.

Concepts

We are going to set out to build a statically typed functional programming language with a native code
generation backend. What does all this mean?

Functional Languages

In mathematics a function is defined as a correspondence that assigns exactly one element of a set to each
element in another set. If a function f(z) = a then the function evaluated at x will always have the value
a. Central to the notion of all mathematics is the notion of equational reasoning, where if a = f(x) then



for an expression g(f(z), f(z)), this is always equivalent to g(a, a). In other words the values computed
by functions can always be substituted freely at all occurrences.

The central idea of functional programming is to structure our programs in such a way that we can reason
about them as a system of equations just like we can in mathematics. The evaluation of a pure function
is one in which side effects are prohibited, a function may only return a result without altering the world
in any observable way.

The implementation may perform effects, but central to this definition is the unobservability of such
effects. A function is said to be referentially transparent if replacing a function with its computed value
output yields the same observable behavior.

By contrast impure functions are ones which allow unrestricted and observable side effects. The invo-
cation of an impure function always allows for the possibility of performing any functionality before
yielding a value.

// dimpure: mutation side effects
function f() {

X += 33

return 42;

// impure: international side effects
function f() {

launchMissiles();

return 42;

The behavior of a pure function is independent of where and when it is evaluated, whereas the behavior
of an impure function is intrinsically tied to its execution order.

Functional programming is defined simply as programming strictly with pure referentially transparent
functions.

Static Typing

Types are a formal language integrated with a programming language that refines the space of allowable
behavior and degree of expressible programs for the language. Types are the world’s most popular formal
method for analyzing programs.

In a language like Python all expressions have the same type at compile time, and all syntactically valid
programs can be evaluated. In the case where the program is nonsensical the runtime will bubble up
exceptions during evaluation. The Python interpreter makes no attempt to analyze the given program
for soundness at all before running it.

>>> True & ”false”
Traceback (most recent call last):



File ”<stdin>”, line 1, in <module>
TypeError: unsupported operand type(s) for &: ’bool’ and ’str’

By comparison Haskell will do quite a bit of work to try to ensure that the program is well-defined before
running it. The language that we use to predescribe and analyze static semantics of the program is that
of static types.

Prelude> True && ”false”

<interactive>:2:9:
Couldn’t match expected type ‘Bool’ with actual type ¢[Char]’
In the second argument of ‘(&&)’, namely ¢”false”’
In the expression: True && ”false”
In an equation for ‘it’: it = True && ”false”

Catching minor type mismatch errors is the simplest example of usage, although they occur extremely
frequently as we humans are quite fallible in our reasoning about even the simplest of program construc-
tions! Although this is just the tip of the iceberg, the gradual trend over the last 20 years goes toward
more expressive types in modern type systems which are capable of guaranteeing a large variety of program
correctness properties.

* Preventing resource allocation errors.

* Enforcing security in communication protocols.

* Side effect management.

* Preventing buffer overruns.

* Ensuring cryptographic properties for network protocols.
Modeling and verifying theorems in mathematics and logic.
* Preventing data races and deadlocks in concurrent systems.

Even though type systems will never be able to capture all aspects of a program, more sophisticated type
systems are increasingly able to model a large space of program behavior. They are one of the most
exciting areas of modern computer science research. Put most bluntly, static types let you be dumb
and offload the checking that you would otherwise have to do in your head to a system that can do the
reasoning for you and work with you to interactively build your program.

Functional Compilers

A compiler is a program for turning high-level representation of ideas in a human readable language
into another form. A compiler is typically divided into parts, a frontend and a backend. These are loose
terms but the frontend typically deals with converting the human representation of the code into some
canonicalized form while the backend converts the canonicalized form into another form that is suitable
for evaluation.

The high level structure of our functional compiler is described by the following block diagram. Each
describes a phase which is a sequence of transformations composed to transform the input program.



Source Parsing Desugar Type Checking Transformation Compilation

* Source - The frontend textual source language.

* Parsing - Source is parsed into an abstract syntax tree.

* Desugar - Redundant structure from the frontend language is removed and canonicalized.

* Type Checking - The program is type-checked and/or type-inferred yielding an explicitly typed
form.

* Transformation - The core language is transformed to prepare for compilation.

* Compilation - The core language is lowered into a form to be compiled or interpreted.

* (Code Generation) - Platform specific code is generated, linked into a binary.

A pass may transform the input program from one form into another or alter the internal state of the
compiler context. The high level description of the forms our final compiler will go through is the
following sequence:

Frontend — Core Language —# Compiler IR — Machine Code

Internal forms used during compilation are intermediate representations and typically any non-trivial lan-
guage will involve several.

Parsing

The source code is simply the raw sequence of text that specifies the program. Lexing splits the text
stream into a sequence of zokens. Only the presence of invalid symbols is checked, programs that are
meaningless in other ways are accepted. Whitespace is either ignored or represented as a unique token
in the stream.

let f x = x + 1

For instance the previous program might generate a token stream like the following:

TokenlLet,
TokenSym ”f”,
TokenSym ”x”,
TokenEq,
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TokenSym ”x”,
TokenAdd,
TokenNum 1

We can then scan the token stream via and dispatch on predefined patterns of tokens called productions
and recursively builds up the syntax datatype for the abstract syntax tree (AST) by traversal of the input
stream.

type Name = String

data Expr
= Var Name
| Lit Lit
| Op PrimOp [Expr]
| Let Name [Name] Expr

data Lit
= LitInt Int

data PrimOp
= Add

So for example the following string is parsed into the resulting Expr value.
let f x = x + 1

Let ”f” [”X”] (op Add [Var ”X”, Lt (LﬁtII’lt l)])

Desugaring

Desugaring is the process by which the frontend AST is transformed into a simpler form of itself by
reducing the number of complex structures by expressing them in terms of a fixed set of simpler con-
structs.

Haskell’s frontend is very large and many constructs are simplified down. For example where clauses
and operator sections are the most common examples. Where clauses are effectively syntactic sugar for
let bindings and operator sections are desugared into lambdas with the left or right hand side argument
assigned to a fresh variable.

Type Inference
Type inference is the process by which the untyped syntax is endowed with type information by a process

known as #ype reconstruction or type inference. The inference process may take into account explicit type
annotations.

11



let f x = x + 1
Let ”f” [] (Lam ”x” (Op Add [Var ”x”, Lit (LitInt 1)]))

Inference will generate a system of constraints which are solved via a process known as unification to yield
the type of the expression.

Int -> Int -> Int ~ a -> b
b ~ Int ->c

f :: Int -> Int

In some cases this type will be incorporated directly into the AST and the inference will transform the
frontend language into an explicitly typed core language.

Let ”f” []
(Lam ”x”
(TArr TInt TInt)
(App
(App
(Prim ”primAdd”) (Var ”x”))
(Lit (LitInt 1))))

Transformation

The type core representation is often suitable for evaluation, but quite often different intermediate rep-
resentations are more amenable to certain optimizations and make various semantic properties of the
language explicit. These kind of intermediate forms will often attach information about free variables,
allocations, and usage information directly in the AST structure.

The most important form we will use is called the Spineless Tagless G-Machine (STG ), an abstract machine
that makes many of the properties of lazy evaluation explicit directly in the AST.

Code Generation

From the core language we will either evaluate it on top of a high-level interpreter written in Haskell
itself, or into another intermediate language like C or LLVM which can itself be compiled into native
code.

let f x = x + 1

Quite often this process will involve another intermediate representation which abstracts over the process

of assigning and moving values between CPU registers and main memory. LLVM and GHC’s Cmm are
two target languages serving this purpose.

12



mov res, arg

add res, 1
ret

define 132 @f(i32 %x) {

entry:

%add = add nsw i32 %x, 1

ret i32 %add

From here the target language can be compiled into the system’s assembly language. All code that is
required for evaluation is /inked into the resulting module.

movl
mov 1
addl
mov 1
ret

%edi, -4(%rsp)
-4 (%rsp), %edi
$1, %edi

%edi, %eax

And ultimately this code will be assembled into platform specific instructions by the native code generator,
encoded as a predefined sequence of CPU instructions defined by the processor specification.

0000000000000000 <f>:

0: 89 Tc
4. 8b 7c
8: 81 c7
e: 89 f8
10: c3

24 fc mov
24 fc mov
01 00 00 00 add
mov
retq

%edi,-0x4 (%rsp)
-0x4 (%rsp) ,%edi
$0x1,%edd
%edi ,%eax

13



Haskell Basics

Haskell Basics

Let us now survey a few of the core concepts that will be used throughout the text. This will be a very
fast and informal discussion. If you are familiar with all of these concepts then it is very likely you will
be able to read the entirety of this tutorial and focus on the subject domain and not the supporting
code. The domain material itself should largely be accessible to an ambitious high school student or
undergraduate; and requires nothing more than a general knowledge of functional programming.

Functions

Functions are the primary building block of all of Haskell logic.

add :: Integer -> Integer -> Integer
add x y = x +y

In Haskell all functions are pure. The only thing a function may do is return a value.

All functions in Haskell are curried. For example, when a function of three arguments receives less than
three arguments, it yields a partially applied function, which, when given additional arguments, yields
yet another function or the resulting value if all the arguments were supplied.

g :: Int -> Int -> Int -> Int
gXyz=x+y+z

h :: Int -> Int
h=g23

Haskell supports higher-order functions, i.e., functions which take functions and yield other functions.
compose f g = \x -> f (g x)

iterate :: (a -> a) -> a -> [a]
iterate f x = x : (iterate f (f x))

14



Datatypes

Constructors for datatypes come in two flavors: sum types and product types.

A sum type consists of multiple options of #ype constructors under the same type. The two cases can be
used at all locations the type is specified, and are discriminated using pattern matching.

data Sum = A Int | B Bool
A product type combines multiple typed fields into the same type.
data Prod = Prod Int Bool

Records are a special product type that, in addition to generating code for the constructors, generates a
special set of functions known as selectors which extract the values of a specific field from the record.

data Prod = Prod { a :: Int , b :: Bool }

-— a :: Prod -> Int
-— b :: Prod -> Bool

Sums and products can be combined.

data T1
= A Int Int
| B Bool Bool

The fields of a datatype may be parameterized, in which case the type depends on the specific types the
fields are instantiated with.

data Maybe a = Nothing | Just a

Values

A list is a homogeneous, inductively defined sum type of linked cells parameterized over the type of its
values.

data List a = Nil | Cons a (List a)

a = [1,2,3]
Cons 1 (Cons 2 (Cons 3 Nil))

Q
1

List have special value-level syntax:

15



(:) = Cons
[] Nl

(L (2 (1)) =1[1,2,3]

A tuple is a heterogeneous product type parameterized over the types of its two values.

Tuples also have special value-level syntax.

data Pair a b = Pair a b

a = (1,2)
a = Pair 1 2
(,) = Pair

Tuples are allowed (with compiler support) to have up to 15 fields in GHC.

Pattern matching

Pattern matching allows us to discriminate on the constructors of a datatype, mapping separate cases to
separate code paths.

data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just a) = f a

Top-level pattern matches can always be written identically as case statements.

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f x = case x of

Nothing -> n

Just a -> f a

Wildcards can be placed for patterns where the resulting value is not used.

const :: a -> b -> a
const x _ = X

List and tuples have special pattern syntax.

16



length :: [a] -> Int
length [] =0
length (x:xs) = 1 + (length xs)

fst :: (a, b) -> a
fst (a,b) = a

Patterns may be guarded by predicates (functions which yield a boolean). Guards only allow the execu-
tion of a branch if the corresponding predicate yields True.

filter :: (a -> Bool) -> [a] -> [a]

filter pred [] = []
filter pred (x:xs)
| pred x = x : filter pred xs
| otherwise = filter pred xs
Recursion

In Haskell all iteration over data structures is performed by recursion. Entering a function in Haskell
does not create a new stack frame, the logic of the function is simply entered with the arguments on the
stack and yields result to the register. In the case where a function returns an invocation of itself invoked
in the il position the resulting logic is compiled identically to while loops in other languages, via a jmp
instruction instead of a call

sum :: [Int] -> [Int]
sum ys = go ys 0
where
go (x:xs) i = go xs (i+x)
go []1 1 =1

Functions can be defined to recurse mutually on each other.

even 0 True
even n = odd (n-1)

odd 0 = False
odd n = even (n-1)

Laziness

A Haskell program can be thought of as being equivalent to a large directed graph. Each edge represents
the use of a value, and each node is the source of a value. A node can be:

17



* A thunk, i.e., the application of a function to values that have not been evaluated yet

* A thunk that is currently being evaluated, which may induce the evaluation of other thunks in the
process

* An expression in weak head normal form, which is only evaluated to the outermost constructor or
lambda abstraction

The runtime has the task of determining which thunks are to be evaluated by the order in which they
are connected to the main function node. This is the essence of all evaluation in Haskell and is called
graph reduction.

Self-referential functions are allowed in Haskell. For example, the following functions generate infinite
lists of values. However, they are only evaluated up to the depth that is necessary.

-— Infinite stream of 1’s
ones = 1 : ones

-— Infinite count from n
numsFrom n = n : numsFrom (n+1)

-— Infinite stream of -integer squares
squares = map (*2) (numsfrom 0)

The function take consumes an infinite stream and only evaluates the values that are needed for the
computation.

take :: Int -> [a] -> [a]
take n _ | n<=0 = []
[]

take n []
take n (x:xs) x : take (n-1) xs

take 5 squares
[0,1,4,9,16]

This also admits diverging terms (called botzoms), which have no normal form. Under lazy evaluation,
these values can be threaded around and will never diverge unless actually forced.

bot = bot

So, for instance, the following expression does not diverge since the second argument is not used in the
body of const.

const 42 bot
The two bottom terms we will use frequently are used to write the scaffolding for incomplete programs.

error :: String -> a
undefined :: a

18



Higher-Kinded Types
The “type of types” in Haskell is the language of kinds. Kinds are either an arrow (k -> k’) or a star
(%).

The kind of Int is *, while the kind of Maybe is x -> *. Haskell supports higher-kinded types, which
are types that take other types and construct a new type. A type constructor in Haskell always has a kind
which terminates in a *.

= T1 :: (% => %) => % => *
data T1 f a = T1 (f a)

The three special types (,), (=>), [] have special type-level syntactic sugar:

(,) Int Int = (Int, Int)
(->) Int Int = Int -> Int
[1 Int = [Int]
Typeclasses

A typeclass is a collection of functions which conform to a given interface. An implementation of an
interface is called an instance. Typeclasses are effectively syntactic sugar for records of functions and
nested records (called dictionaries) of functions parameterized over the instance type. These dictionaries
are implicitly threaded throughout the program whenever an overloaded identifier is used. When a
typeclass is used over a concrete type, the implementation is simply spliced in at the call site. When a
typeclass is used over a polymorphic type, an implicit dictionary parameter is added to the function so
that the implementation of the necessary functionality is passed with the polymorphic value.

Typeclasses are “open” and additional instances can always be added, but the defining feature of a type-
class is that the instance search always converges to a single type to make the process of resolving over-
loaded identifiers globally unambiguous.

For instance, the Functor typeclass allows us to “map” a function generically over any type of kind (x ->
) and apply it to its internal structure.

class Functor f where
fmap :: (a -=> b) -> fa->fb

instance Functor [] where
fmap f [] =[]
fmap f (x:xs) = f x : fmap f xs

instance Functor ((,) a) where
fmap f (a,b) = (a, f b)

19



Operators

In Haskell, infix operators are simply functions, and quite often they are used in place of alphanumerical
names when the functions involved combine in common ways and are subject to algebraic laws.

infixl
infixl
infixl
infixl

~N ~N oo
~

infixr 5 ++

O

infixr
Operators can be written in section form:

(x+) = \y —> x+y
(+y) = \x > x+y
(+) = \xy —> x+y

Any binary function can be written in infix form by surrounding the name in backticks.

(+l) ‘fmap‘ [152,3] - [2y374]

Monads

A monad is a typeclass with two functions: bind and return.

class Monad m where
bind c:ma->(a->mb) >mb
return :: a -> m a

The bind function is usually written as an infix operator.

infixl 1 >>=

class Monad m where
(>>=) :::ma->(a->mb) ->mb
return :: a -> m a

This defines the structure, but the monad itself also requires three laws that all monad instances must

satisfy.
Law 1

20



return a >>= f = f a

Law 2

m >>= return =m

Law 3

(m >>= f) >>=g =m>= (\x -> f x >>= g)

Haskell has a level of syntactic sugar for monads known as do-notation. In this form, binds are written
sequentially in block form which extract the variable from the binder.

[=%
o

<= f ;m}=Ff>>=\a ->do {m}
m3}=Ff> do {m}3}
=m

3 —Hh Q

o Q
o O
A

}

So, for example, the following are equivalent:

do
a <- f
b <-g
c <-h

return (a, b, c)
f >>=\a —>
g >>=\b —>
h >>= \c —>
return (a, b, c)

Applicatives

Applicatives allow sequencing parts of some contextual computation, but do not bind variables therein.
Strictly speaking, applicatives are less expressive than monads.

class Functor f => Applicative f where
pure :: a -> f a

(<*¥>) ¢+ f (a->b) > fa->fb

(<$>) :: Functor f => (a ->b) > fa->fb
(<$>) = fmap

Applicatives satisfy the following laws:

21



pure id <*> v = v -- Identity

pure f <x> pure x = pure (f x) —-— Homomorphism
u <x> pure y = pure ($y) <x>u -- Interchange
u <x> (v <x> w) = pure (.) <x> u <x> v <x>w -- Composition

For example:

examplel :: Maybe Integer
examplel = (+) <$> ml <*x> m2
where
ml = Just 3

m2 = Nothing

Instances of the Applicative typeclass also have available the functions > and <x. These functions
sequence applicative actions while discarding the value of one of the arguments. The operator x> discards
the left argument, while <x discards the right. For example, in a monadic parser combinator library, the
*> would discard the value of the first argument but return the value of the second.

Monoids

Monoids provide an interface for structures which have an associative operation (mappend, there is also
the synonym <>) and a neutral (also: unit or zero) element (mempty) for that operation.

class Monoid a where

mempty :: a
mappend :: a -> a -> a
mconcat :: [a] -> a

The canonical example is the list type with concatenation as the operation and the empty list as zero.

import Data.Monoid

a :: [Integer]
[1,2,3] <> [4,5,6]

b :: [Integer]
([1,2,3] <> mempty) <> (mempty <> [4,5,6])

o
1

Deriving

Instances for typeclasses like Read, Show, Eq and Ord can be derived automatically by the Haskell com-
piler.

22



data PlatonicSolid
= Tetrahedron

| Cube

| Octahedron

| Dodecahedron

| Icosahedron

deriving (Show, Eg, Ord, Read)

example = show Icosahedron

example = read ”Tetrahedron”
example Cube == Octahedron
example = sort [Cube, Dodecahedron]

I0

A value of type I0 a is a computation which, when performed, does some 1/O before returning a value
of type a. The notable feature of Haskell is that 1O is still functionally pure; a value of type I0 a is
simply a value which stands for a computation which, when invoked, will perform IO. There is no way
to peek into its contents without running it.

For instance, the following function does not print the numbers 1 to 5 to the screen. Instead, it builds
a list of IO computations:

fmap print [1..5] :: [I0O ()]

We can then manipulate them as an ordinary list of values:

reverse (fmap print [1..5]) :: [IO0 ()]

We can then build a composite computation of each of the IO actions in the list using sequence_,
which will evaluate the actions from left to right. The resulting I0 computation can be evaluated in

main (or the GHCi repl, which effectively is embedded inside of 10).

>> sequence_ (fmap print [1..5]) :: IO ()
1

a b WN

>> sequence_ (reverse (fmap print [1..5])) :: I0 ()
5

N W b
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The 10 monad is wired into the runtime with compiler support. It is a special case and most monads in
Haskell have nothing to do with effects in this sense.

putStrLn :: String -> I0 ()
print :: Show a => a -> I0 ()

The type of main is always 10 ().

main :: I0 ()

main = do
putStrLn ”Enter a number greater than 3: ”
x <- readLn
print (x > 3)

The essence of monadic IO in Haskell is that effects are reified as first class values in the language and reflected
in the type system. This is one of foundational ideas of Haskell, although it is not unique to Haskell.

Monad Transformers

Monads can be combined together to form composite monads. Each of the composite monads consists
of layers of different monad functionality. For example, we can combine an error-reporting monad with
a state monad to encapsulate a certain set of computations that need both functionalities. The use of
monad transformers, while not always necessary, is often one of the primary ways to structure modern
Haskell programs.

class MonadTrans t where
1ift :: Monad m => ma -> t m a

The implementation of monad transformers is comprised of two different complementary libraries,
transformers and mt1l. The transformers library provides the monad transformer layers and mt1
extends this functionality to allow implicit lifting between several layers.

To use transformers, we simply import the 77ans variants of each of the layers we want to compose and
then wrap them in a newtype.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
import Control.Monad.Trans
import Control.Monad.Trans.State

import Control.Monad.Trans.Writer

newtype Stack a = Stack { unStack :: StateT Int (WriterT [Int] IO) a }
deriving (Monad)
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foo :: Stack ()
foo = Stack $ do

put 1 -- State layer
Tift $ tell [2] -- Writer layer
lift $ Lift $ print 3 -- I0 Layer
return ()

evalStack :: Stack a -> I0 [Int]
evalStack m = execWriterT (evalStateT (unStack m) 0)

As illustrated by the following stack diagram:

Stack

mStack

StateT

evalStateT

Writer T

execWriter T

[0 ]

Using mt1 and GeneralizedNewtypeDeriving, we can produce the same stack but with a simpler
forward-facing interface to the transformer stack. Under the hood, mt1 is using an extension called
FunctionalDependencies to automatically infer which layer of a transformer stack a function belongs
to and can then lift into it.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
import Control.Monad.Trans
import Control.Monad.State

import Control.Monad.Writer

newtype Stack a = Stack { unStack :: StateT Int (WriterT [Int] IO) a }
deriving (Monad, MonadState Int, MonadWriter [Int], MonadIO)

foo :: Stack ()

foo = do
put 1 -- State layer
tell [2] -- Writer layer
1iftI0 $ print 3 -- I0 Layer
return ()
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evalStack :: Stack a -> IO [Int]
evalStack m = execWriterT (evalStateT (unStack m) 0)

StateT

The state monad allows functions within a stateful monadic context to access and modify shared state.

put 1 s -> State s () -- set the state value

get :: State s s -- get the state

gets :: (s -> a) -> State s a -- apply a function over the state, and return the result
modify :: (s -> s) -> State s () -- set the state, using a modifier function

Evaluation functions often follow the naming convention of using the prefixes run, eval, and exec:

execState :: State s a -> s -> s -- yield the state
evalState :: State s a -> s -> a -- yield the return value
runState :: State s a -> s -> (a, s) -- yield the state and return value

For example:

import Control.Monad.State

test :: State Int Int
test = do

put 3

modify (+1)

get

main :: IO ()
main = print $ execState test 0

ReaderT

The Reader monad allows a fixed value to be passed around inside the monadic context.

ask :: Reader r r -- get the value
asks :: (r -> a) -> Reader r a -— apply a function to the value, and return the re
local :: (r => r) -> Reader r a -> Reader r a -- run a monadic action, with the value modified by

For example:

import Control.Monad.Reader

data MyContext = MyContext
{ foo :: String

26



, bar :: Int
} deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do
n <- asks bar
x <- asks foo
if n >0
then return (Just x)
else return Nothing

exl :: Maybe String
exl = runReader computation $ MyContext ”hello” 1

ex2 :: Maybe String
ex2 runReader computation $ MyContext ”haskell” ©

Writer T

The writer monad lets us emit a lazy stream of values from within a monadic context. The primary
function tell adds a value to the writer context.

tell :: (Monoid w) => w -> Writer w ()
The monad can be evaluated returning the collected writer context and optionally the returned value.

execWriter :: (Monoid w) => Writer wa -> w
runWriter :: (Monoid w) => Writer w a -> (a, w)

import Control.Monad.Writer

type MyWriter = Writer [Int] String

example :: MyWriter
example = do
tell [1..5]

tell [5..10]
return ”foo”

output :: (String, [Int])
output = runWriter example

ExceptT

The Exception monad allows logic to fail at any point during computation with a user-defined exception.
The exception type is the first parameter of the monad type.
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throwError :: e -> Except e a
runExcept :: Except e a -> Either e a

For example:

import Control.Monad.Except
type Err = String

safeDiv :: Int -> Int -> Except Err Int
safeDiv a 0 = throwError ”Divide by zero”
safeDiv a b = return (a ‘div‘ b)

example :: Either Err Int
example = runExcept $ do
x <- safeDiv 2 3
y <- safeDiv 2 0
return (x + vy)

Kleisli Arrows

The additional combinators for monads ((>=>), (<=<)) compose two different monadic actions in se-
quence. (<=<) is the monadic equivalent of the regular function composition operator (.) and (>=>)
is just flip (<=<).

(>=>) :: Monad m => (a ->mb) > (b->mc) -—>a->mc

The monad laws can be expressed equivalently in terms of Kleisli composition.

(f >=> g) >=>h = f >=> (g >=> h)
return >=> f = f

f >=> return = f

Text

The usual String type is a singly-linked list of characters, which, although simple, is not efhicient in
storage or locality. The letters of the string are not stored contiguously in memory and are instead
allocated across the heap.

The Text and ByteString libraries provide alternative efficient structures for working with contiguous
blocks of text data. ByteString is useful when working with the ASCII character set, while Text
provides a text type for use with Unicode.

The OverloadedStrings extension allows us to overload the string type in the frontend language to
use any one of the available string representations.
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class IsString a where
fromString :: String -> a

pack :: String -> Text
unpack :: Text -> String

So, for example:

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T

str :: T.Text
str = ”bar”

Cabal

To set up an existing project with a sandbox, run:
$ cabal sandbox init

This will create the . cabal-sandbox directory, which is the local path GHC will use to look for depen-
dencies when building the project.

To install dependencies from Hackage, run:

$ cabal 1install --only-dependencies

Finally, configure the library for building:

$ cabal configure

Now we can launch a GHCi shell scoped with the modules from the project in scope:

$ cabal repl

Resources

If any of these concepts are unfamiliar, there are some external resources that will try to explain them.
The most thorough is probably the Stanford course lecture notes.

¢ Stanford CS240h by Bryan O’Sullivan, David Terei
* Real World Haskell by Bryan O’Sullivan, Don Stewart, and John Goerzen
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http://www.scs.stanford.edu/14sp-cs240h/
http://www.amazon.com/Real-World-Haskell-Bryan-OSullivan/dp/05965149800

There are some books as well, but your mileage may vary with these. Much of the material is dated and
only covers basic functional programming and not “programming in the large”.

* Learn you a Haskell by Miran Lipovaca
* Programming in Haskell by Graham Hutton
* Thinking Functionally by Richard Bird
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Parsing

Parsing

Parser Combinators

For parsing in Haskell it is quite common to use a family of libraries known as parser combinators which
let us compose higher order functions to generate parsers. Parser combinators are a particularly expressive
pattern that allows us to quickly prototype language grammars in an small embedded domain language
inside of Haskell itself. Most notably we can embed custom Haskell logic inside of the parser.

NanoParsec

So now let’s build our own toy parser combinator library which we’ll call NanoParsec just to get the feel
of how these things are built.

{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
module NanoParsec where

import Data.Char
import Control.Monad
import Control.Applicative

Structurally a parser is a function which takes an input stream of characters and yields a parse tree by
applying the parser logic over sections of the character stream (called Jexemes) to build up a composite
data structure for the AST.

newtype Parser a = Parser { parse :: String -> [(a,String)] }

Running the function will result in traversing the stream of characters yielding a value of type a that
usually represents the AST for the parsed expression, or failing with a parse error for malformed input,
or failing by not consuming the entire stream of input. A more robust implementation would track the
position information of failures for error reporting.

runParser :: Parser a -> String -> a
runParser m s =
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case parse m s of
[(res, [1)] -> res
[(_, rs)] -> error ”Parser did not consume entire stream.”
-> error ”Parser error.”

Recall that in Haskell the String type is defined to be a list of Char values, so the following are equivalent
forms of the same data.

”l+2*3”
[717, 7+7, ?2” ’*7, ’3?]

We advance the parser by extracting a single character from the parser stream and returning in a tuple
containing itself and the rest of the stream. The parser logic will then scrutinize the character and either
transform it in some portion of the output or advance the stream and proceed.

item :: Parser Char
item = Parser $ \s ->
case s of
[] -> [1

(c:cs) -> [(c,cs)]

A bind operation for our parser type will take one parse operation and compose it over the result of
second parse function. Since the parser operation yields a list of tuples, composing a second parser
function simply maps itself over the resulting list and concat’s the resulting nested list of lists into a
single flat list in the usual list monad fashion. The unit operation injects a single pure value as the result,
without reading from the parse stream.

bind :: Parser a -> (a -> Parser b) -> Parser b
bind p f = Parser $ \s -> concatMap (\(a, s’) -> parse (f a) s’) $ parse p s

unit :: a -> Parser a
unit a = Parser (\s -> [(a,s)])

As the terminology might have indicated this is indeed a Monad (also Functor and Applicative).

instance Functor Parser where
fmap f (Parser cs) = Parser (\s -> [(f a, b) | (a, b) <- cs s])

instance Applicative Parser where
pure = return

(Parser csl) <*> (Parser cs2) = Parser (\s -> [(f a, s2) | (f, s1) <- csl s, (a, s2)
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instance Monad Parser where
return = unit
(>>=) = bind

Of particular importance is that this particular monad has a zero value (failure), namely the function
which halts reading the stream and returns the empty stream. Together this forms a monoidal structure
with a secondary operation (combine) which applies two parser functions over the same stream and
concatenates the result. Together these give rise to both the Alternative and MonadPlus class instances
which encode the logic for trying multiple parse functions over the same stream and handling failure
and rollover.

The core operator introduced here is the (<| >) operator for combining two optional paths of parser logic,
switching to the second path if the first fails with the zero value.

instance MonadPlus Parser where
mzero = failure
mplus = combine

instance Alternative Parser where
empty = mzero
(<|>) = option

combine :: Parser a -> Parser a -> Parser a
combine p q = Parser (\s -> parse p s ++ parse q s)

failure :: Parser a
failure = Parser (\cs -> [])

option :: Parser a -> Parser a -> Parser a
option p q = Parser $ \s —>
case parse p s of
[1] -> parse g s
res -> res

Derived automatically from the Alternative typeclass definition are the many and some functions. Many
takes a single function argument and repeatedly applies it until the function fails and then yields the
collected results up to that point. The some function behaves similar except that it will fail itself if there
is not at least a single match.

-- | One or more.

some :: f a -> f [a]
some v = some_v
where
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many_v = some_v <|> pure []
some_v = (:) <$> v <*> many_v

-- | Zero or more.
many :: f a -> f [a]
many v = many_v
where
many_v = some_v <|> pure []
some_v = (:) <S> v <*> many_v

On top of this we can add functionality for checking whether the current character in the stream matches
a given predicate ( i.e is it a digit, is it a letter, a specific word, etc).

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = item ‘bind¢ \c ->
if p c

then unit c
else (Parser (\cs -> []))

Essentially this 50 lines code encodes the entire core of the parser combinator machinery. All higher
order behavior can be written on top of just this logic. Now we can write down several higher level
functions which operate over sections of the stream.

chainll parses one or more occurrences of p, separated by op and returns a value obtained by a recursing
until failure on the left hand side of the stream. This can be used to parse left-recursive grammar.

oneOf :: [Char] -> Parser Char
oneOf s = satisfy (flip elem s)

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainl p op a = (p ‘chainll‘ op) <|> return a

chainll :: Parser a -> Parser (a -> a -> a) -> Parser a
p ‘chainll‘ op = do {a <- p; rest a}
where rest a = (do f <- op
b <-p
rest (f a b))
<|> return a

Using satisfy we can write down several combinators for detecting the presence of specific common
patterns of characters ( numbers, parenthesized expressions, whitespace, etc ).

char :: Char -> Parser Char
char ¢ = satisfy (c ==
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natural :: Parser Integer
natural = read <$> some (satisfy isDigit)

string :: String -> Parser String
string [] = return []
string (c:cs) = do { char c; string cs; return (c:cs)}

token :: Parser a -> Parser a
token p = do { a <- p; spaces ; return a}

reserved :: String -> Parser String
reserved s = token (string s)

spaces :: Parser String
spaces = many $ oneOf ” \n\r”

digit :: Parser Char
digit = satisfy isDigit

number :: Parser Int
number = do
s <= string ”-” <|> return []

cs <- some digit
return $ read (s ++ cs)

parens :: Parser a -> Parser a
parens m = do

reserved 7 (”

n <-m

reserved ”)”

return n

And that’s about it! In a few hundred lines we have enough of a parser library to write down a simple
parser for a calculator grammar. In the formal Backus—Naur Form our grammar would be written as:

number = [ ”-” ] digit { digit }.
digit = ”9” | ”1” | . | ”g» | ”g”
expr = term { addop term }.

term = factor { mulop factor }.
factor = 7(” expr ”)” | number.

addop = 77+” | 77_”.

mulop = 7%”,

The direct translation to Haskell in terms of our newly constructed parser combinator has the following
form:
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data Expr
= Add Expr Expr
| Mul Expr Expr
| Sub Expr Expr
| Lit Int
deriving Show

eval :: Expr -> Int

eval ex = case ex of
Add a b -> eval a + eval b
Mul a b -> eval a x eval b
Sub a b -> eval a - eval b
Lit n ->n

int :: Parser Expr

int = do

n <- number
return (Lit n)

expr :: Parser Expr
expr = term ‘chainll¢ addop
term :: Parser Expr

term = factor ‘chainll® mulop

factor :: Parser Expr
factor =
int
<|> parens expr

infixOp :: String -> (a -> a -> a) -> Parser (a -> a -> a)
infixOp x f = reserved x >> return f

addop :: Parser (Expr -> Expr -> Expr)
addop = (infixOp ”+” Add) <|> (infixOp ”-” Sub)

mulop :: Parser (Expr -> Expr -> Expr)
mulop = infixOp ”*” Mul

run :: String -> Expr
run = runParser expr

main :: I0 ()

main = forever $ do
putStr 7> 7
a <- getlLine
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print $ eval $ run a
Now we can try out our little parser.

runhaskell parsec.hs
1+2

1+2%3

Generalizing String

The limitations of the String type are well-known, but what is particularly nice about this approach is
that it adapts to different stream types simply by adding an additional parameter to the Parser type which
holds the stream type. In its place a more efficient string data structure (Text, ByteString) can be used.

newtype Parser s a = Parser { parse :: s -> [(a,s)] }

For the first couple of simple parsers we will use the String type for simplicity’s sake, but later we will
generalize our parsers to use the Text type. The combinators and parsing logic will not change, only the
lexer and language definition types will change slightly to a generalized form.

Parsec

Now that we have the feel for parser combinators work, we can graduate to the full Parsec library. We'll
effectively ignore the gritty details of parsing and lexing from now on. Although an interesting subject
parsing is effectively a solved problem and the details are not terribly important for our purposes.

The Parsec library defines a set of common combinators much like the operators we defined in our toy
library.

Combinator  Description

char Match the given character.
string Match the given string.
<[> The choice operator tries to parse the first argument before

proceeding to the second. Can be chained sequentially to
generate a sequence of options.

many Consumes an arbitrary number of patterns matching the given
pattern and returns them as a list.

many1 Like many but requires at least one match.

sepBy Match a arbitrary length sequence of patterns, delimited by
a given pattern.

optional Optionally parses a given pattern returning its value as a
Maybe.

try Backtracking operator will let us parse ambiguous matching

expressions and restart with a different pattern.
parens Parses the given patterdAurrounded by parentheses.




Tokens

To create a Parsec lexer we must first specify several parameters about how individual characters are
handled and converted into tokens. For example some tokens will be handled as comments and simply
omitted from the parse stream. Other parameters include indicating what characters are to be handled
as keyword identifiers or operators.

langDef :: Tok.LanguageDef ()

langDef = Tok.LanguageDef

{ Tok.commentStart

, Tok.commentEnd

, Tok.commentLine

, Tok.nestedComments
, Tok.identStart

, Tok.identLetter

, Tok.opStart

, Tok.opLetter

, Tok.reservedNames
, Tok.reservedOpNames
, Tok.caseSensitive

Lexer

”{_7’
”7}7’

N ___»

True

= letter

alphaNum <|> oneOf ”_’”

oneOf 7: ! #$%&x+./<=>7@\\"|[-~”
oneOf 7:!#$%&x+./<=>2@\\"|[-~”
reservedNames

reservedOps

True

Given the token definition we can create the lexer functions.

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser langDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Ex.Operator String () Identity a
prefixOp s f = Ex.Prefix (reservedOp s >> return f)

Abstract Syntax Tree

In a separate module we’ll now define the abstract syntax for our language as a datatype.
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module Syntax where

data Expr
= Tr

| FU

| Zero

| IsZero Expr

| Succ Expr

| Pred Expr

| If Expr Expr Expr
deriving (Eq, Show)

Parser

Much like before our parser is simply written in monadic blocks, each mapping a set of patterns to a
construct in our Expr type. The toplevel entry point to our parser is the expr function which we can
parse with by using the Parsec function parse.

prefixOp s f = Ex.Prefix (reservedOp s >> return f)

-- Infix operators
table :: Ex.OperatorTable String () Identity Expr
table = [
[
prefix0Op ”succ” Succ
, prefixOp ”pred” Pred
, prefixOp ”iszero” IsZero

]
]
-- if/then/else
ifthen :: Parser Expr
ifthen = do

reserved 7if”

cond <- expr
reservedOp ”then”

tr <- expr

reserved ”else”

fl <- expr

return (If cond tr f1l)

-- Constants
true, false, zero :: Parser Expr
true = reserved ”true” >> return Tr
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false = reserved ”false” >> return F1l
zero = reservedOp 70”7 >> return Zero

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

factor :: Parser Expr
factor =
true
<|> false
<|> zero
<|> difthen
<|> parens expr

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer

r <-p
eof
return r

The toplevel function we'll expose from our Parse module is parseExpr which will be called as the entry

point in our REPL.

parseExpr s = parse (contents expr) ”<stdin>” s

Evaluation

Our small language gives rise to two syntactic classes, values and expressions. Values are in normal form
and cannot be reduced further. They consist of True and False values and literal numbers.

isNum Zero = True
isNum (Succ t) = dsNum t
isNum = False

isVal :: Expr -> Bool
isVal Tr = True

isVal FL = True

isval t | isNum t = True
isVal _ = False

The evaluation of our languages uses the Maybe applicative to accommodate the fact that our reduction
may halt at any level with a Nothing if the expression being reduced has reached a normal form or
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cannot proceed because the reduction simply isn’t well-defined. The rules for evaluation are a single step
by which an expression takes a single small step from one form to another by a given rule.

eval’ x = case x of

IsZero Zero -> Just Tr

IsZero (Succ t) | isNum t -> Just Fl

IsZero t -> IsZero <$> (eval’ t)
Succ t -> Succ <$> (eval’ t)
Pred Zero -> Just Zero

Pred (Succ t) | disNum t -> Just t

Pred t -> Pred <$> (eval’ t)
If Tr ¢ _ -> Just c

If FL _ a -> Just a

If t c a -> (\t? —> If t’ c a) <$> eval’ t
_ -> Nothing

At the toplevel we simply apply eval’ repeatedly until either a value is reached or we're left with an ex-
pression that has no well-defined way to proceed. The term is “stuck” and the program is in an undefined
state.

nf x = fromMaybe x (nf <$> eval’ x)

eval :: Expr -> Maybe Expr
eval t = case nf t of
nft | isval nft -> Just nft
| otherwise -> Nothing -- term is ”stuck”

REPL

The driver for our simple language simply invokes all of the parser and evaluation logic in a loop feeding
the resulting state to the next iteration. We will use the haskeline library to give us readline interactions
for the small REPL. Behind the scenes haskeline is using readline or another platform-specific system
library to manage the terminal input. To start out we just create the simplest loop, which only parses
and evaluates expressions and prints them to the screen. We'll build on this pattern in each chapter,
eventually ending up with a more full-featured REPL.

The two functions of note are the operations for the InputT monad transformer.

runInputT :: Settings IO -> InputT IO a -> IO a
getInputLine :: String -> InputT IO (Maybe String)

When the user enters an EOF or sends a SIGQUIT to input, getInputLine will yield Nothing and can
handle the exit logic.
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process :: String -> I0 ()
process line = do
let res = parseExpr line
case res of
Left err -> print err
Right ex -> print $ runEval ex

main :: IO ()
main = runInputT defaultSettings loop
where
loop = do
minput <- getInputLine ”Repl> ”
case minput of
Nothing -> outputStrLn ”Goodbye.”
Just input -> (liftIO $ process input) >> loop

Soundness
Great, now let’s test our little interpreter and indeed we see that it behaves as expected.

Arith> succ 0
succ 0

Arith> succ (succ 0)
succ (succ 0)

Arith> diszero 0
true

Arith> if false then true else false
false

Arith> diszero (pred (succ (succ 0)))
false

Arith> pred (succ 0)
(]

Arith> 1diszero false
Cannot evaluate

Arith> if 0 then true else false
Cannot evaluate

Oh no, our calculator language allows us to evaluate terms which are syntactically valid but semantically
meaningless. We'd like to restrict the existence of such terms since when we start compiling our languages
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later into native CPU instructions these kind errors will correspond to all sorts of nastiness (segfaults,
out of bounds errors, etc). How can we make these illegal states unrepresentable to begin with?

Full Source

e NanoParsec
¢ Calculator
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https://github.com/sdiehl/write-you-a-haskell/blob/master/chapter3/parsec.hs
https://github.com/sdiehl/write-you-a-haskell/tree/master/chapter3/calc

| ambda Calculus

That language is an instrument of human reason, and not merely a medium for the expression of
thought, is a truth generally admitted.

— George Boole

Lambda Calculus

Fundamental to all functional languages is the most atomic notion of composition, function abstraction
of a single variable. The lambda calculus consists very simply of three terms and all valid recursive
combinations thereof:

Var

Lam
T~ () (Ay.y)
L1
App

These types are typically referred to in code by several contractions of their names:

® Var - A variable
¢ Lam - A lambda abstraction
* App - An application

e:=x (Var)
Az.e (Lam)
ce  (App)

The lambda calculus is often called the “assembly language” of functional programming, and variations
and extensions on it form the basis of many functional compiler intermediate forms for languages like
Haskell, OCaml, StandardML, etc. The variation we will discuss first is known as untyped lambda
calculus, by contrast later we will discuss the typed lambda calculus which is an extension thereof.

A lambda abstraction is said to bind its variable. For example the lambda here binds z.
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Ax.e

There are several syntactical conventions that we will adopt when writing lambda expressions. Applica-
tion of multiple expressions associates to the left.

1 T2 T3 By = (. ((X122)23)...20)
By convention application extends as far to the right as is syntactically meaningful. Parenthesis are used
to disambiguate.

In the lambda calculus all lambda abstractions bind a single variable, their body may be another lambda
abstraction. Out of convenience we often write multiple lambda abstractions with their variables on one
lambda symbol. This is merely a syntactical convention and does not change the underlying meaning.

ATY.z = AT \Y.2

The actual implementation of the lambda calculus admits several degrees of freedom in how they are
represented. The most notable is the choice of identifier for the binding variables. A variable is said to
be bound if it is contained in a lambda expression of the same variable binding. Conversely a variable is
free if it is not bound.

A term with free variables is said to be an open term while one without free variables is said to be closed
or a combinator.

eg = \T.x

e1 = Mz.(z(Ay.ya)z)y
eo is a combinator while e; is not. In e; both occurances of x are bound. The first 4 is bound, while the
second is free. a is also free.

Multiple lambda abstractions may bind the same variable name. Each occurance of a variable is then
bound by the nearest enclosing binder. For example the x variable in the following expression is bound
on the inner lambda, while y is bound on the outer lambda. This phenomenon is referred to as name
shadowing.

Azy.(Azz.x +y)

SKI Combinators

There are three fundamental closed expressions called the SKI combinators.

S=Mf.(Ag.-(Mz.fz(gx)))
K=z \y.x
I=Xzx
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In Haskell these are written simply:

x

= f x (g x)
X

40X
X X —h
I < o
I

Rather remarkably Moses Schonfinkel showed that all closed lambda expression can be expressed in
terms of only the S and K combinators - even the I combinator. For example one can easily show that

SKK reduces to 1.

SKK

= ((A\zyz.zz2(y2))(Azy.x)(Azy.z))

= ((yz.(Ary.x)z(y2)) Azy.z))

= Az.(Azy.x)z((Azy.x)z)

= Az.(\y.2)(A\zy.z)z)

= Az.2

=1
This fact is a useful sanity check when testing an implementation of the lambda calculus.
Omega Combinator

An important degenerate case that we'll test is the omega combinator which applies a single argument
to itself.

w = Az.xT
When we apply the w combinator to itself we find that this results in an infinitely long repeating chain

of reductions. A sequence of reductions that has no normal form ( i.e. it reduces indefinitely ) is said to
diverge.

Az.zx)Ar.zz) »  (Qz.ax)(Az.zz) — (Az.zx)(Ar.zx) ...
We'll call this expression the  combinator. It is the canonical looping term in the lambda calculus.

Quite a few of our type systems which are statically typed will reject this term from being well-formed,
so it is quite a useful tool for testing.

Q =ww = (Az.zz)(Az.20)

Implementation

The simplest implementation of the lambda calculus syntax with named binders is the following defini-
tion.
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type Name = String

data Expr
= Var Name
| App Expr Expr
| Lam Name Expr

There are several lexical syntax choices for lambda expressions, we will simply choose the Haskell con-
vention which denotes lambda by the backslash (\) to the body with (->), and application by spaces.
Named variables are simply alphanumeric sequences of characters.

* Logical notation: const = Azy.x
¢ Haskell notation: const = \x y -> x

In addition other terms like literal numbers or booleans can be added, and these make writing expository
examples a little easier. For these we will add a Lit constructor.

data Expr

| Lit Lit

data Lit
= LInt Int
| LBool Bool

Substitution

Evaluation of a lambda term ((Az.e)a) proceeds by substitution of all free occurrences of the variable
x in e with the argument $a. A single substitution step is called a reduction. We write the substitution
application in brackets before the expression it is to be applied over, [z/a]e maps the variable z to the
new replacement a over the expression e.

(A\x.e)a — [z/ale

A substitution metavariable will be written as [s].

In detail, substitution is defined like this:

[x/a]z =a

[x/aly =y ifx#y
[wfale = (iw/ale)([z/ale)

[x/a]A\z.e = Ax.e

[z/a]Ay.e = Ay.[x/ale ifx#yandy ¢ fv(e)
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The fundamental issue with using locally named binders is the problem of name capture, or how to handle
the case where a substitution conflicts with the names of free variables. We need the condition in the
last case to avoid the naive substitution that would fundamentally alter the meaning of the following
expression when y is rewritten to .

ly/x](A\x.zy) = Az.2x
By convention we will always use a capture-avoiding substitution. Substitution will only proceed if the

variable is not in the set of free variables of the expression, and if it does then a fresh variable will be
created in its place.

(Az.e)a — [z/ale ifz ¢ fv(a)
There are several binding libraries and alternative implementations of the lambda calculus syntax that

avoid these problems. It is a very common problem and it is very easy to implement incorrectly even for
experts.

Conversion and Equivalences

Alpha equivalence

(Az.e) = (Ay.[z/y]e)
Alpha equivalence is the property ( when using named binders ) that changing the variable on the binder

and throughout the body of the expression should not change the fundamental meaning of the whole
expression. So for example the following are alpha-equivalent.

Azy.xy = Aab.ab

Beta-reduction

Beta reduction is simply a single substitution step, replacing a variable bound by a lambda expression
with the argument to the lambda throughout the body of the expression.

(A\x.a)y ﬁ> [z/y]a
Eta-reduction
Meex e if x¢fu(e)
This is justified by the fact that if we apply both sides to a term, one step of beta reduction turns the left

side to the right side:
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(Az.ex)e’ Lee if w ¢ fv(e)

Eta-expansion

The opposite of eta reduction is eta-expansion, which takes a function that is not saturated and makes
all variables explicitly bound in a lambda. Eta-expansion will be important when we discuss translation

into STG.

Reduction

Evaluation of lambda calculus expressions proceeds by beta reduction. The variables bound in a lambda
are substituted across the body of the lambda. There are several degrees of freedom in the design space
about how to do this, and in which order an expression should be evaluated. For instance we could
evaluate under the lambda and then substitute variables into it, or instead evaluate the arguments and
then substitute and then reduce the lambda expressions. More on this will be discussed in the section
on Evaluation models.

Untyped> (\x.x) 1
1

Untyped> (\x v . y) 12
2

Untyped> (\x v z. x z (y z)) (\xy . x) (\xy . x)
=> \xyz. (xz(yz)
=>\yz. ((\xy .x)z(yz))
=> \xy . x
=>\y . z
=> z
=> \z . z
\z . z

In the untyped lambda calculus we can freely represent infinitely diverging expressions:

Untyped> \f . (f (\x . (f x x)) (\x . (f x x)))
\F . (f (\x . (fxx)) (\x . (fx x)))
Untyped> (\f . (\x. (f x x)) (\x. (f x x))) (\f x . f f)

Untyped> (\x. x x) (\x. x Xx)
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Let
In addition to application, a construct known as a let binding is often added to the lambda calculus

syntax. In the untyped lambda calculus, let bindings are semantically equivalent to applied lambda
expressions.

leta=einb := (la.b)e
In our languages we will write let statements like they appear in Haskell.
let a = e in b

Toplevel expression will be written as let statements without a body to indicate that they are added to
the global scope. The Haskell lanuage does not use this convention but OCaml, StandardML and the
interactive mode of the Haskell compiler GHC do. In Haskell the preceding let is simply omitted.

let S fgx=1Fx (g x);
let K x y = x;

let T x = x;

let skk = S K K;

For now the evaluation rule for let is identical to that of an applied lambda.

(Az.e)v — [z/v]le (E-Lam)
letz=vine — [z/v]e (E-Let)

In later variations of the lambda calculus let expressions will have different semantics and will differ from
applied lambda expressions. More on this will be discussed in the section on Hindley-Milner inference.

Recursion

Probably the most famous combinator is Curry’s Y combinator. Within an untyped lambda calculus,
Y can be used to allow an expression to contain a reference to itself and reduce on itself permitting
recursion and looping logic.

Y = A f.(Az.(f(z2))A2.(f(z2)))

The Y combinator satisfies:

Y/ = f(Yf)

For fun one can prove that the Y-combinator can be expressed in terms of the S and K combinators.
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Y = SSK(S(K(SS(S(SSK))))K)

In a untyped lambda calculus language without explicit fixpoint or recursive let bindings, the Y combi-
nator can be used to create both of these constructs out of nothing but lambda expressions. However
it is more common to just add either an atomic fixpoint operator or a recursive let as a fundamental
construct in the term syntax.

e:=1x
€1 €2
Ax.e

fixe

Where fix has the evaluation rule:

fixv — v (fixv)

Together with the fixpoint (or the Y combinator) we can create let bindings which contain a reference to
itself within the body of the bound expression. We'll call these recursive let bindings, they are written as
let recin ML dialects. For now we will implement recursive lets as simply syntactic sugar for wrapping
a fixpoint around a lambda binding by the following equivalence.

let rec x = el 1in e2 = let x = fix (\x. el) 1in e2

So for example we can now write down every functional programmer’s favorite two functions: facto-
rial and fibonacci. To show both styles, one is written with let rec and the other with explicit
fix.

let fact = fix (\fact -> \n ->
if (n == 0)
then 1
else (n x (fact (n-1))));

let rec fib n =

if (n == 0)
then 0

else if (n==1)
then 1

else ((fib (n-1)) + (fib (n-2)));
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Pretty Printing

Hackage provides quite a few pretty printer libraries that ease the process of dumping out textual forms
for our data types. Although there are some differences between the libraries most of them use the same
set of combinators. We will use the Text.PrettyPrint module from the pretty package on Hackage.
Most of our pretty printing will be unavoidable boilerplate but will make debugging internal state much
easier.

Combinators

<> Concatenation

<+>  Spaced concatenation

char Renders a character as a Doc

text Rendersa string as a Doc

hsep Horizontally concatenates a list of Doc
vcat Vertically joins a list of Doc with newlines

The core type of the pretty printer is the Doc type which is the abstract type of documents. Combinators
over this type will manipulate the internal structure of this document which is then finally reified to an
physical string using the render function. Since we intend to pretty print across multiple types we will
create a Pretty typeclass.

module Pretty where
import Text.PrettyPrint

class Pretty p where
ppr :: Int -> p -> Doc

pp :: p -> Doc
pp = ppr ©

First, we create two helper functions that collapse our lambda bindings so we can print them out as
single lambda expressions.

viewVars :: Expr -> [Name]

viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr

viewBody (Lam _ a) = viewBody a
viewBody x = x

Then we create a helper function for parenthesizing subexpressions.
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parensIf :: Bool -> Doc -> Doc
parensIf True = parens
parensIf False = id

Finally, we define ppr. The p variable will indicate our depth within the current structure we're printing
and allow us to print out differently to disambiguate it from its surroundings if necessary.

instance Pretty Expr where
ppr p e = case e of
Lit (LInt a) -> text (show a)
Lit (LBool b) -> text (show b)
Var x -> text x
App a b -> parensIf (p>0) $ (ppr (p+l) a) <+> (ppr p b)
Lam x a -> parensIf (p>0) $

char 7\\’
<> hsep (fmap pp (viewVars e))
<+> P=>7

<+> ppr (p+tl) (viewBody e)

ppexpr :: Expr —-> String
ppexpr = render . ppr 0

Full Source

* Untyped Lambda Calculus
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ype Systems

[A type system is a] tractable syntactic method for proving the absence of certain program behaviors
by classifying phrases according to the kinds of values they compute.

— Benjamin Pierce

Type Systems

Type systems are a formal language in which we can describe and restrict the semantics of a programming
language. The study of the subject is a rich and open area of research with many degrees of freedom in
the design space.

As stated in the introduction, this is a very large topic and we are only going to cover enough of it to get through
writing the type checker for our language, not the subject in its full generality. The classic text that everyone
reads is Tjpes and Programming Languages or ( TAPL ) and discusses the topic more in depth. In fact we
will follow TAPL very closely with a bit of a Haskell flavor.

Rules

In the study of programming language semantics, logical statements are written in a specific logical
notation. A property, for our purposes, will be a fact about the type of a term. It is written with the
following notation:

1: Nat

These facts exist within a preset universe of discourse called a #ype system with definitions, properties,
conventions, and rules of logical deduction about types and terms. Within a given system, we will have
several properties about these terms. For example:

e (A1) 0 is a natural number.
* (A2) For a natural number n, succ(n) is a natural number.

Given several properties about natural numbers, we'll use a notation that will allow us to chain them
together to form proofs about arbitrary terms in our system.

0 : Nat (Al)

n : Nat
succ(n) : Nat

(A2)
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In this notation, the expression above the line is called the antecedent, and expression below the line is
called the conclusion. A rule with no antecedent is an axiom.

The variable n is metavariable standing for any natural number, an instance of a rule is a substitution of
values for these metavariables. A derivation is a tree of rules of finite depth. We write - C' to indicate
that there exists a derivation whose conclusion is C, that C'is provable.

For example I 2 : Nat by the derivation:

0 : Nat (A
succ(0) : Nat (A2)
succ(succ(0)) : Nat

(A2)

Also present in these derivations may be a typing context or typing environment written as I'. The context
is a sequence of named variables mapped to properties about the named variable. The comma operator
for the context extends I' by adding a new property on the right of the existing set. The empty context
is denoted @ and is the terminal element in this chain of properties that carries no information. So
contexts are defined by:

I'i=9o
I'xz:7

Here is an example for a typing rule for addition using contexts:

I'key:Nat TI'Fey:Nat
I'ke; + e :Nat

In the case where the property is always implied regardless of the context we will shorten the expression.
This is just a lexical convention.

g+ P = FP

Type Safety

In the context of modeling the semantics of programming languages using this logical notation, we often
refer to two fundamental categories of rules of the semantics.

* Statics : Semantic descriptions which are derived from the syntax of the language.
* Dynamics : Semantics descriptions which describe the value evolution resulting from a program.

Type safety is defined to be the equivalence between the statics and the dynamics of the language. This
equivalence is modeled by two properties that relate the types and evaluation semantics:

* Progress : If an expression is well typed then either it is a value, or it can be further evaluated by
an available evaluation rule.

* Preservation : If an expression e has type 7, and is evaluated to €’, then €’ has type 7.
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Types

The word “type” is quite often overload in the common programming lexicon. Other languages often
refer to runtime tags present in the dynamics of the languages as “types”. Some examples:

# Python
>>> type(1l)
<type ’int’>

# Javascript
> typeof (1)
’number’

# Ruby
irb(main):001:0> 1l.class
=> Fixnum

# Julia
julia> typeof (1)
Int64

# Clojure
user=> (type 1)
java.lang.Long

While this is a perfectly acceptable alternative definition, we are not going to go that route and instead
restrict ourselves purely to the discussion of szatic types, in other words types which are known before
runtime. Under this set of definitions many so-called dynamically typed languages often only have a
single static type. For instance in Python all static types are subsumed by the PyObject and it is only
at runtime that the tag PyTypeObject *ob_type is discriminated on to give rise to the Python notion
of “types”. Again, this is not the kind of type we will discuss. The trade-offs that these languages make
is that they often have trivial static semantics while the dynamics for the language are often exceedingly
complicated. Languages like Haskell and OCaml are the opposite point in this design space.

Types will usually be written as 7 and can consist of many different constructions to the point where the
type language may become as rich as the value level language. For now let’s only consider three simple
types, two ground types (Nat and Bool) and an arrow type.

7 ::= Bool
Nat
T =T

The arrow type will be the type of function expressions, the left argument being the input type and the
output type on the right. The arrow type will by convention associate to the right.

TL —> To —> T3 — T4 = T1—>(7'2—>(7’3—>7'4))
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In all the languages which we will implement the types present during compilation are erased. Although
types are possibly present in the evaluation semantics, the runtime cannot dispatch on types of values at
runtime. Types by definition only exist at compile-time in the static semantics of the language.

Small-Step Semantics

The real quantity we're interested in formally describing is expressions in programming languages. A
programming language semantics is described by the operational semantics of the language. The oper-
ational semantics can be thought of as a description of an abstract machine which operates over the
abstract terms of the programming language in the same way that a virtual machine might operate over
instructions.

We use a framework called small-step semantics where a derivation shows how individual rewrites compose
to produce a term, which we can evaluate to a value through a sequence of state changes. This is a
framework for modeling aspects of the runtime behavior of the program before running it by describing
the space of possible transitions type and terms may take. Ultimately we'd like the term to transition
and terminate to a value in our language instead of becoming “stuck” as we encountered before.

Recall our little calculator language from before when we constructed our first parser:

data Expr
= Tr
| FL
| IsZero Expr
| Succ Expr
| Pred Expr
| If Expr Expr Expr
| Zero

The expression syntax is as follows:

e ::=True
False
iszeroe
succ e
prede
if e then e else e
0

The small step evaluation semantics for this little language is uniquely defined by the following 9 rules.
They describe each step that an expression may take during evaluation which may or may not terminate
and converge on a value.
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€1 — €2

(E-Succ)
succ e; — succ eg
G e (E-Pred)
pred e; — pred ep
pred 0 — 0 (E-PredZero)
pred (succn) —» n (E-PredSucc)
_)
- “ ?2 (E-IsZero)
iszero e; — iszero ey
iszero 0 — true (E-IsZeroZero)

iszero (succ n) — false (E-IsZeroSucc)
if True then ey else e3 — e2 (E-IfTrue)

if False then es else e3 — e3  (E-IfFalse)

The evaluation logic for our interpreter simply reduced an expression by the predefined evaluation rules
until either it reached a normal form (a value ) or got stuck.

nf :: Expr -> Expr
nf t = fromMaybe t (nf <$> evall t)

eval :: Expr -> Maybe Expr
eval t = case isVal (nf t) of
True -> Just (nf t)
False -> Nothing -- term 1is ”stuck”

Values in our language are defined to be literal numbers or booleans.

isVal :: Expr -> Bool
isVal Tr = True

isVal FL = True

isval t | isNum t = True
isVal _ = False

Written in applicative form there is a noticeable correspondence between each of the evaluation rules
and our evaluation logic.

-- Evaluate a single step.
evall :: Expr —-> Maybe Expr
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evall expr = case expr of

Succ t -> Succ <$> (evall t)
Pred Zero -> Just Zero

Pred (Succ t) | isNum t -> Just t

Pred t -> Pred <$> (evall t)
IsZero Zero -> Just Tr

IsZero (Succ t) | dsNum t -> Just F1

IsZero t -> IsZero <$> (evall t)
If Tr c _ -> Just c

If FL _ a -> Just a

If t c a -> (\t? -—> If t’ c a) <$> evall t
_ -> Nothing

As we noticed before we could construct all sorts of pathological expressions that would become stuck.
Looking at the evaluation rules, each of the guarded pattern matches gives us a hint of where things
might “go wrong” whenever a boolean is used in the place of a number and vice versa. We'd like to
statically enforce this invariant at compile-time instead, and so we'll introduce a small type system to
handle the two syntactic categories of terms that exist. The abstract type of natural numbers and the
type of booleans:

7 1= Bool
Nat

Which is implemented in Haskell as the following datatype:

data Type
= TBool
| TNat

Now for the typing rules:
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ey : Nat

e (T-Succ)
succ e : Nat
_cilat (T-Pred)
pred e; : Nat
- c1 : Nat (T-IsZero)
iszero e; : Bool
0 : Nat (T-Zero)
True : Bool (T-True)
False : Bool (T-False)

e1:Bool ey:7T e3:T

(T-16)

ife; thenes elsees : 7

These rules restrict the space of all possible programs. It is more involved to show, but this system has
both progress and preservation as well. If a term is now well-typed it will always evaluate to a value and
cannot “go wrong~ at evaluation.

To check the well-formedness of an expression we implement a piece of logic known as #ype checker which
determines whether the term has a well-defined type in terms of typing rules, and if so returns it or fails
with an exception in the case where it does not.

type Check a = Except TypeError a

data TypeError
= TypeMismatch Type Type

check :: Expr -> Either TypeError Type
check = runExcept . typeof

typeof :: Expr -> Check Type
typeof expr = case expr of
Succ a -> do
ta <- typeof a
case ta of
TNat -> return TNat
-> throwError $ TypeMismatch ta TNat

Pred a -> do

ta <- typeof a
case ta of
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TNat -> return TNat
-> throwError $ TypeMismatch ta TNat

IsZero a -> do
ta <- typeof a
case ta of
TNat -> return TBool
-> throwError $ TypeMismatch ta TNat

If abc -> do

ta <- typeof a

tb <- typeof b

tc <- typeof c

if ta /= TBool

then throwError $ TypeMismatch ta TBool

else
if tb /= tc
then throwError $ TypeMismatch ta tb
else return tc

Tr -> return TBool

Fl -> return TBool
Zero —> return TNat

Observations

The pathological stuck terms that we encountered previously in our untyped language are now com-
pletely inexpressive and are rejected at compile-time.

Arith> succ 0
succ 0 : Nat

Arith> succ (succ 0)
succ (succ 0) : Nat

Arith> if false then true else false
false : Bool

Arith> diszero (pred (succ (succ 0)))
false : Bool

Arith> pred (succ 0)
0 : Nat

Arith> diszero false
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Type Mismatch: Bool is not Nat

Arith> if 0 then true else false
Type Mismatch: Nat 1is not Bool

This is good, we've made a whole class of illegal programs unrepresentable. Lets do more of this!

Simply Typed Lambda Calculus

The simply typed lambda calculus ( STLC ) of Church and Curry is an extension of the lambda calculus
that annotates each lambda binder with a type term. The STLC is explictly typed, all types are present
directly on the binders and to determine the type of any variable in scope we only need to traverse to its
enclosing scope.

e =x
€1 €2

X T.e

The simplest STLC language is these three terms, however we will add numeric and boolean literal terms
so that we can write meaningful examples.

e:==x
€1 €2
Ax:T.€
n
true
false

ifetheneelsee

We can consider a very simple type system for our language that will consist of Int and Bool types and
function types.

7:=Int

Bool
T—T

Type Checker

The typing rules are quite simple, and again we get the nice property that there is a one-to-one mapping
between each syntax term and a typing rule.
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* T-Var Variables are simply pulled from the context.

* T-Lam lambdas introduce a typed variable into the environment when inferring the body.

* T-App Applications of a lambda with type t1 -> t2 to a value of type t1 yields a value of type

t2.

rz:o0€el
I'tx:0o
z:mke:m
I'FXx:me:m — m

I'Fel:m — 7 I'Fey:m

Fl—elengg

I'Fc:Bool T'Fey:7 T'leg:r
T'Fifcthenejelseey: T

I'kn:Int

I' - True : Bool

I' - False : Bool

(T-Var)

(T-Lam)

(T-App)

(T-If)
(T-Int)
(T-True)

(T-False)

The evaluation rules describe the nature by which values transition between other values and determine

the runtime behavior of the program.

e1 — €}
erez — €} eg

e — €
vieg — v1€h

(A\x : T.e1)ve — [x/va]eq
if True then e else e5 — es
if False then e; else e3 — e3

e — €}

if e; then es else e3 — if €] then es else e3

(E-Appl)

(E-App2)

(E-AppLam)
(E-IfTrue)

(E-IfFalse)

(E-Tf)

Since we now have the notion of scoped variables for lambda, we will implement a typing environment

Env as manifest as I in our typing rules.
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type Env = [(Name, Type)]

extend :: (Name, Type) -> Env -> Env
extend xt env = xt : env

inEnv :: (Name, Type) -> Check a -> Check a
inEnv (x,t) = local (extend (x,t))

lookupVar :: Name -> Check Type
lookupVar x = do
env <- ask
case lookup x env of
Just e -> return e
Nothing -> throwError $ NotInScope X

The typechecker will be a ExceptT + Reader monad transformer stack, with the reader holding the
typing environment. There are three possible failure modes for our simply typed lambda calculus type-
checker:

* The case when we try to unify two unlike types.
* The case when we try to apply a non-function to an argument.
* The case when a variable is referred to that is not in scope.

data TypeError
= Mismatch Type Type
| NotFunction Type
| NotInScope Name

type Check = ExceptT TypeError (Reader Env)

There is a direct equivalence between syntax patterns here and the equivalent typing judgement for it.
This will not always be the case in general though. The implementation of the type checker is as follows:

check :: Expr -> Check Type
check expr = case expr of

Lit (LInt{}) -> return TInt
Lit (LBool{}) -> return TBool
Lam x t e -> do

rhs <- dinEnv (x,t) (check e)

return (TArr t rhs)

App el e2 -> do
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tl <- check el
t2 <- check e2
case tl of
(TArr a b) | a == t2 -> return b
| otherwise -> throwError $ Mismatch t2 a
ty -> throwError $ NotFunction ty

Var x -> lookupVar x

Evaluation

Fundamentally the evaluation of the typed lambda calculus is no different than the untyped lambda
calculus, nor could it be since the syntactic addition of types is purely a static construction and cannot
have any manifestation at runtime by definition. The only difference is that the simply typed lambda
calculus admits strictly less programs than the untyped lambda calculus.

The foundational idea in compilation of static typed languages is that a typed program can be transformed
into an untyped program by erasing type information but preserving the evaluation semantics of the typed
program. If our program has #pe safety then it can never “go wrong” at runtime.

Of course the converse is not true, programs that do not “go wrong” are not necessarily well-typed, al-
though whether we can prove whether a non well-typed program cannot go wrong is an orthogonal issue.
The game that we as statically typed language implementors play is fundamentally one of restriction: we
take the space of all programs and draw a large line around the universe of discourse of programs that
we are willing to consider, since these are the only programs that we can prove properties for.

Well-typed programs don’t go wrong, but not every program that never goes wrong is well-typed. Irs
easy to exhibit programs that don’t go wrong but are ill-typed in ... any ... decidable type system.
Many such programs are useful, which is why dynamically-typed languages like Erlang and Lisp are
Justly popular.

— Simon Peyton Jones

Power always comes at a price. Using one system you can do more things. In another you can say more
about the things a program can do. The fundamental art in the discipline of language design is balancing
the two to find the right power-to-weight ratio.

Observations

Some examples to try:

Stle> (\x : Int . \y : Int . y) 12
2

Stle> (\x : (Int -> Int). x) (\x : Int . 1) 2
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Stle> (\x Int x) False

Couldn’t match expected type ’Int’ with actual type:

Stle> 1 2

’Bool’

Tried to apply to non-function type: Int

Stlc> (\x Int Int

<<closure>>

(\y x))

Notation Reference

The notation introduced here will be used throughout the construction of the Haskell compiler. For
reference here is a list of each of the notational conventions we will use. Some of these terms are not yet

introduced.
Notation Convention
{a,b,c} Set
a Vector
e:T Type judgement
P(z) Predicate
P(z):Q(z) Conditional
PHQ Implication
a, 3 Type variables
r Type context
T Expression variables
e Expression metavariable
T Type metavariable
K Kind metavariable
o Type scheme metavariable
C Type constraint
TL ~ Ty Unification constraint
[T/a] Substitution
s Substitution metavariable
[s]T Substitution application
TL — T2 Function type
C=r Qualified type
T X To Product type
T+ T2 Sum type
1 Bottom type
Yo Universal quantifier
Ja.T Existential quantifier
Nat, Bool Ground type
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Full Source

* Typed Arithmetic
¢ Simply Typed Lambda Calculus
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—valuation

Well-typed programs cannot “go wrong”.
— Robin Milner

Evaluation

While the lambda calculus is exceedingly simple, there is a great deal of variety in ways to evaluate
and implement the reduction of lambda expressions. The different models for evaluation are evaluation
stratgies.

There is a bifurcation between two points in the design space: strict and non-strict evaluation. An evalu-
ation strategy is strict if the arguments to a lambda expression are necessarily evaluated before a lambda
is reduced. A language in which the arguments are not necessarily evaluated before a lambda is reduced
is non-strict.

Alternatively expressed, diverging terms are represented up to equivalence by the bottom value, written
as L. A function f is non-strict if:

FL# L
Evaluation Models

There are many different models, and various hybrids thereof. We will consider three dominant models:

* Call-by-value: arguments are evaluated before a function is entered
* Call-by-name: arguments are passed unevaluated

* Call-by-need: arguments are passed unevaluated but an expression is only evaluated once and
shared upon subsequent references

Given an expression fz the reduction in different evaluation models proceeds differently:

Call-by-value:

1. Evaluate z to v
2. Evaluate f to \y.e
3. Evaluate [y/v]e

Call-by-name:
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1. Evaluate f to Ay.e
2. Evaluate [y/z]e

Call-by-need:

1. Allocate a thunk v for
2. Evaluate f to \y.e
3. Evaluate [y/v]e

Terms that have a normal form in one model, may or may not have a normal form in another. In call-
by-need and call-by-name evaluation diverging terms are not necessarily evaluated before entry, so some
terms that have a normal form in these models may diverge under call-by-value.

Call-by-value

Call by value is an extremely common evaluation model. Many programming languages both imperative
and functional use this evaluation strategy. The essence of call-by-value is that there are two categories of
expressions: terms and values. Values are lambda expressions and other terms which are in normal form
and cannot be reduced further. All arguments to a function will be reduced to normal form before they
are bound inside the lambda and reduction only proceeds once the arguments are reduced.

For a simple arithmetic expression, the reduction proceeds as follows. Notice how the subexpression (2
+ 2) is evaluated to normal form before being bound.

Ax. \y. y x) (2 +2) (\x. x + 1)
=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=>4 + 1

=> 5

Naturally there are two evaluation rules for applications.

e1 — €}

(E-App1)

erez — €} eg

/
2" % (E-App2)

vieg — v1€h
(Az.e)v — [z/v]le (E-AppLam)
For a simple little lambda calculus the call-by-value interpreter is quite simple. Part of the runtime eval-

uation of lambda calculus involves the creation of closures, environments which hold the local variables
in scope. In our little language there are two possible values which reduction may converge on, Vint

and VClosure.
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data Expr
= Var Int
| Lam Expr
| App Expr Expr
| Lit Int
| Prim PrimOp Expr Expr
deriving Show

data PrimOp = Add | Mul
deriving Show

data Value

= VInt Int

| VClosure Expr Env
deriving Show

type Env = [Value]

Env

emptyEnv ::
(]

emptyEnv

The evaluator function simply maps the local scope and a term to the final value. Whenever a variable is
referred to it is looked up in the environment. Whenever a lambda is entered it extends the environment
with the local scope of the closure.

eval :: Env -> Expr -> Value
eval env term = case term of
Var n => env !! n
Lam a -> VClosure a env
App a b —>
let VClosure c env’ = eval env a 1in
let v = eval env b 1in
eval (v : env’) c

Lit n -> VInt n
Prim p a b -> (evalPrim p) (eval env a) (eval env b)

evalPrim :: PrimOp -> Value -> Value -> Value
evalPrim Add (VInt a) (VInt b) VInt (a + b)
evalPrim Mul (VInt a) (VInt b) VInt (a * b)

Call-by-name

In call-by-name evaluation, the arguments to lambda expressions are substituted as is, evaluation simply
proceeds from left to right substituting the outermost lambda or reducing a value. If a substituted
expression is not used it is never evaluated.
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e1 — €}

(E-App)

erez — €} eg

(Az.e1)es — [z/ez]er  (E-AppLam)

For example, the same expression we looked at for call-by-value has the same normal form but arrives at
it by a different sequence of reductions:

(\x. \y. y x) (2 +2) (\x. x + 1)
=> (\y. y (2 +2)) (\x. x + 1)

=> (\x. x + 1) (2 + 2)

=> (2 +2) + 1

=>4 + 1

=> 5

Call-by-name is non-strict, although very few languages use this model.

Call-by-need

Call-by-need is a special type of non-strict evaluation in which unevaluated expressions are represented
by suspensions or thunks which are passed into a function unevaluated and only evaluated when needed
or forced. When the thunk is forced the representation of the thunk is updated with the computed value
and is not recomputed upon further reference.

The thunks for unevaluated lambda expressions are allocated when evaluated, and the resulting computed
value is placed in the same reference so that subsequent computations share the result. If the argument
is never needed it is never computed, which results in a trade-off between space and time.

Since the evaluation of subexpression does not follow any pre-defined order, any impure functions with
side-effects will be evaluated in an unspecified order. As a result call-by-need can only effectively be
implemented in a purely functional setting.

type Thunk = () -> IO Value

data Value
= VBool Bool
| VInt Integer
| VClosure (Thunk -> IO Value)

update :: IORef Thunk -> Value -> IO ()
update ref v = do
writeIORef ref (\() -> return v)
return ()
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force :: IORef Thunk -> IO Value
force ref = do

th <- readIORef ref

v <= th ()

update ref v

return v

mkThunk :: Env -> String -> Expr -> (Thunk -> IO Value)
mkThunk env x body = \a -> do

a’ <- newIORef a

eval ((x, a’) : env) body

eval :: Env -> Expr -> IO Value
eval env ex = case ex of
EVar n -> do
th <- lookupEnv env n
v <- force th
return v

ELam x e -> return $ VClosure (mkThunk env x e)

EApp a b -> do
VClosure ¢ <- eval env a
c (\() -> eval env b)

EBool b -> return $ VBool b
EInt n -> return $ VInt n
EFix e -> eval env (EApp e (EFix e))

For example, in this model the following program will not diverge since the omega combinator passed
into the constant function is not used and therefore the argument is not evaluated.

omega = (\x -> x x) (\x => x Xx)

testl = (\y -> 42) omega

omega :: Expr

omega = EApp (ELam ”x” (EApp (EVar ”x”) (EVar ”x”)))

(ELam ”x” (EApp (EVar ”x”) (EVar ”x7)))

testl :: IO Value
testl eval [] $ EApp (ELam ”y” (EInt 42)) omega

Higher Order Abstract Syntax (HOAS)

GHC Haskell being a rich language has a variety of extensions that, among other things, allow us to
map lambda expressions in our defined language directly onto lambda expressions in Haskell. In this
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case we will use a GADT to embed a Haskell expression inside our expression type.

{-# LANGUAGE GADTs #-}

data Expr a where

Lift :: a -> Expr a

Tup :: Expr a -> Expr b -> Expr (a, b)
Lam :: (Expr a -> Expr b) -> Expr (a -> b)
App :: Expr (a -> b) -> Expr a -> Expr b

Fix :: Expr (a -> a) -> Expr a

The most notable feature of this encoding is that there is no distinct constructor for variables. Instead
they are simply values in the host language. Some example expressions:

id :: Expr (a -> a)
id Lam (\x -> x)

tr :: Expr (a -> b -> a)
tr Lam (\x -> (Lam (\y -> x)))

fl :: Expr (@ => b -> b)
fl = Lam (\x -> (Lam (\y -> y)))

Our evaluator then simply uses Haskell for evaluation.

eval :: Expr a -> a

eval (Lift v) = v

eval (Tup el e2) (eval el, eval e2)

eval (Lam f) = \x -> eval (f (Lift x))
eval (App el e2) = (eval el) (eval e2)
eval (Fix f) (eval f) (eval (Fix f))

Some examples of use:

fact :: Expr (Integer -> Integer)
fact =
Fix (
Lam (\f ->
Lam (\y ->
Lift (
if eval y == 0
then 1

else eval y * (eval f) (eval y - 1)))))
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test :: Integer
test = eval fact 10

main :: I0 ()
main = print test

Several caveats must be taken when working with HOAS. First of all, it takes more work to transform
expressions in this form since in order to work with the expression we would need to reach under the
lambda binder of a Haskell function itself. Since all the machinery is wrapped up inside of Haskell’s
implementation even simple operations like pretty printing and writing transformation passes can be
more difficult. This form is a good form for evaluation, but not for transformation.

Parametric Higher Order Abstract Syntax (PHOAS)

A slightly different form of HOAS called PHOAS uses a lambda representation parameterized over the
binder type under an existential type.

{-# LANGUAGE RankNTypes #-}

data ExprP a
= VarP a
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Integer

newtype Expr = Expr { unExpr :: forall a . ExprP a }

The lambda in our language is simply a lambda within Haskell. As an example, the usual SK combinators
would be written as follows:

-— i x =X
il ExprP a

i = LamP (\a -> VarP a)

-k xy =x

k :: ExprP a

k = LamP (\x -> LamP (\y -> VarP x))

-—-s fgx=1Ffx (g x)
s :: ExprP a
s =
LamP (\f ->
LamP (\g —->
LamP (\x ->
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AppP
(AppP (VarP f) (VarP x))
(AppP (VarP g) (VarP x))
)))

Evaluation will result in a runtime Value type, just as before with our outer interpreters. We will use
several “extractor” functions which use incomplete patterns under the hood. The model itself does not
prevent malformed programs from blowing up here, and so it is necessary to guarantee that the program
is sound before evaluation. Normally this would be guaranteed at a higher level by a typechecker before
even reaching this point.

data Value
= VLit Integer
| VFun (Value -> Value)

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of
VFun f -> f

_ -> error ”not a function”
fromVLit :: Value -> Integer
fromVLit val = case val of

VLit n => n

_ -> error ”not an integer”

Evaluation simply exploits the fact that nestled up under our existential type is just a Haskell function

and so we get all the name capture, closures and binding machinery for free. The evaluation logic for
PHOAS model is extremely short.

eval :: Expr -> Value
eval e = ev (unExpr e) where
ev (LamP f) = VFun(ev . f)
ev (VarP v) = v
ev (AppP el e2) = fromVFun (ev el) (ev e2)
ev (LitP n) = VLit n

Consider the S K K = I example again and check the result:

skk :: ExprP a
skk = AppP (AppP s k) k

example :: Integer
example = fromVLit $ eval $ Expr (AppP skk (LitP 3))

We will use this evaluation technique extensively in writing interpreters for our larger languages. It is an
extremely convenient and useful method for writing interpreters in Haskell.
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Embedding 1O

As mentioned before, effects are first class values in Haskell.

In Haskell we don't read from a file directly, but create a value that represents reading from a file. This
allows us to very cleanly model an interpreter for our language inside of Haskell by establishing a mapping
between the base operations of our language and existing function implementations of the standard
operations in Haskell, and using monadic operations to build up a pure effectful computation as a result
of interpretation. After evaluation, we finally lift the resulting IO value into Haskell and execute the
results. This fits in nicely with the PHOAS model and allows us to efficiently implement a fully-fledged
interpreter for our language with remarkably little code, simply by exploiting Haskell’s implementation.

To embed 1O actions inside of our interpreter we create a distinct VEffect value that will build up a
sequenced 1O computation during evaluation. This value will be passed off to Haskell and reified into
real world effects.

data ExprP a
= VarP a
| GlobalP Name
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Char
| EffectP a

data Value
= VChar Char
| VFun (Value -> Value)
| VEffect (IO Value)
| vunit

fromVEff :: Value -> (I0 Value)
fromVEff val = case val of
VEffect f -> f
-> error ”not an effect”

eval :: Expr -> Value
eval e = ev (unExpr e) where
ev (LamP f) = VFun(ev . f)
ev (AppP el e2) = fromVFun (ev el) (ev e2)
ev (LitP n) = VChar n
ev (EffectP v) = v
ev (VarP v) = v

ev (GlobalP op) = prim op
-- Lift an effect from our language into Haskell IO.

run :: Expr -> IO ()
run f = void (fromVEff (eval f))
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The prim function will simply perform a lookup on the set of builtin operations, which we'll define with
a bit of syntactic sugar for wrapping up Haskell functions.

unary :: (Value -> Value) -> Value
unary f = lam $ \a -> f a

binary :: (Value -> Value -> Value) -> Value
binary f = lam $ \a ->
lam $ \b -> f ab

prim :: Name -> Value
prim op = case op of
?putChar#” -> unary $ \x ->
VEffect $ do
putChar (fromVChar x)
return VUnit

?setChar#” -> VEffect $ do
val <- getChar
return (VChar val)

?bindIO#” -> binary $ \x y -> bindIO x y
PreturnIO#” -> unary $ \Xx -> returnIO x
?thenIO#” -> binary $ \x y -> thenIO x y

For example thenIO# sequences effects in our language will simply squash two VEffect objects into
one composite effect building up a new VEffect value that is using Haskell’s monadic sequencing on
the internal 10 value.

bindIO :: Value -> Value -> Value
bindIO0 (VEffect f) (VFun g) = VEffect (f >>= fromVEff . g)

thenIO :: Value -> Value -> Value
thenIO (VEffect f) (VEffect g) = VEffect (f >> g)

returnIO :: Value -> Value
returnI0 a = VEffect $ return a

Effectively we're just recreating the same conceptual relationship that Haskell IO has with its runtime,
but instead our host language uses Haskell as the runtime!

Full Source

Evaluation
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* Call-by-value
* Call-by-need

Higher Order Interpreters
* HOAS

* PHOAS
* Embedding IO
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Hindley-Milner Inference

There is nothing more practical than a good theory.

— James C. Maxwell

Hindley-Milner Inference

The Hindley-Milner type system ( also referred to as Damas-Hindley-Milner or HM ) is a family of
type systems that admit the serendipitous property of having a tractable algorithm for determining types
from untyped syntax. This is achieved by a process known as unification, whereby the types for a well-
structured program give rise to a set of constraints that when solved always have a unique principal type.

The simplest Hindley Milner type system is defined by a very short set of rules. The first four rules
describe the judgements by which we can map each syntactic construct (Lam, App, Var, Let) to their
expected types. We'll elaborate on these rules shortly.

e (TVar

I'ke;: 7;367;262 : TZ Fey:m (T-App)
r i)\xx T ; Frel ::272 (T-Lam)

- l_l—‘e}l— :IZt T :Félxi:nael; :672_ & (T-Let)
T+ 41:;:'_06 :z é -va(F) (T-Gen)
ke :Fal1_ — 0(:1 C o (T-Inst)

Milner’s observation was that since the typing rules map uniquely onto syntax, we can in effect run the
typing rules “backwards” and whenever we dont have a known type for an subexpression, we “guess” by
putting a fresh variable in its place, collecting constraints about its usage induced by subsequent typing
judgements. This is the essence of #ype inference in the ML family of languages, that by the generation
and solving of a class of unification problems we can reconstruct the types uniquely from the syntax.
The algorithm itself is largely just the structured use of a unification solver.
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However full type inference leaves us in a bit a bind, since while the problem of inference is tractable
within this simple language and trivial extensions thereof, but nearly any major addition to the language
destroys the ability to infer types unaided by annotation or severely complicates the inference algorithm.
Nevertheless the Hindley-Milner family represents a very useful, productive “sweet spot” in the design
space.

Syntax

The syntax of our first type inferred language will effectively be an extension of our untyped lambda
calculus, with fixpoint operator, booleans, integers, let, and a few basic arithmetic operations.

type Name = String

data Expr
= Var Name

| App Expr Expr

| Lam Name Expr

| Let Name Expr Expr

| Lit Lit

| If Expr Expr Expr

| Fix Expr

| Op Binop Expr Expr
deriving (Show, Eq, Ord)

data Lit
= LInt Integer
| LBool Bool
deriving (Show, Eq, Ord)

data Binop = Add | Sub | Mul | Eql
deriving (Eq, Ord, Show)

data Program = Program [Decl] Expr deriving Eq

type Decl = (String, Expr)

The parser is trivial, the only addition will be the toplevel let declarations (Decl) which are joined into
the global Program. All toplevel declarations must be terminated with a semicolon, although they can
span multiple lines and whitespace is ignored. So for instance:

-— SKI combinators

let T x = x;

let K x y = x;

let S fgx=1Ffx (g x);
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As before let rec expressions will expand out in terms of the fixpoint operator and are just syntactic
sugar.

Polymorphism

We will add an additional constructs to our language that will admit a new form of polymorphism for
our language. Polymorphism is property of a term to simultaneously admit several distinct types for the
same function implementation.

For instance the polymorphic signature for the identity function maps a input of type «

id = Va.oo = o
id = Az:a.x
Now instead of having to duplicate the functionality for every possible type (i.e. implementing idInt,

idBool, ...) we our type system admits any instantiation that is subsumed by the polymorphic type
signature.

idiyt = Int — Int
idgyo1 = Bool — Bool

A rather remarkably fact of universal quantification is that many properties about inhabitants of a type are
guaranteed by construction, these are the so-called free theorems. For instance the only (nonpathological)
implementation that can inhabit a function of type (a, b) -> aisanimplementation precisely identical
to that of fst.

A slightly less trivial example is that of the fmap function of type Functor f => (a -> b) -> f a
-> f b. The second functor law states that.

forall f g. fmap f . fmap g = fmap (f . g)

However it is impossible to write down a (nonpathological) function for fmap that was well-typed and

didn’t have this property. We get the theorem for free!

Types
The type language we'll use starts with the simple type system we used for our typed lambda calculus.

newtype TVar = TV String
deriving (Show, Eq, Ord)

data Type

= TVar TVar
| TCon String
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| TArr Type Type
deriving (Show, Eq, Ord)

typeInt, typeBool :: Type

typeInt = TCon ”Int”
typeBool = TCon ”Bool”

Type schemes model polymorphic types, they indicate that the type variables bound in quantifier are
polymorphic across the enclosed type and can be instantiated with any type consistent with the signature.
Intuitively the indicate that the implementation of the function

data Scheme = Forall [TVar] Type
Type schemes will be written as o in our typing rules.

ou=T

vVa.r
For example the id and the const functions would have the following types:

id:Va.a —»a
const : Vab.a - b —a
We've now divided our types into two syntactic categories, the monotypes and polytypes. In our simple
initial languages type schemes will always be the representation of top level signature, even if there are
no polymorphic type variables. In implementation terms this means when a monotype is yielded from

our Infer monad after inference, we will immediately generalize it at the toplevel closing over all free type
variables in a type scheme.

Context

The typing context or environment is the central container around which all information during the
inference process is stored and queried. In Haskell our implementation will simply be a newtype wrapper
around a Map‘ of Var to Scheme types.

newtype TypeEnv = TypeEnv (Map.Map Var Scheme)

The two primary operations are extension and restriction which introduce or remove named quantities
from the context.

MNe={y:oly:cel,x#£y}
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Tz:r=M\z)U{z: 7}

Operations over the context are simply the usual Set operations on the underlying map.

extend :: TypeEnv -> (Var, Scheme) -> TypeEnv
extend (TypeEnv env) (x, s) = TypeEnv $ Map.insert x s env

Inference Monad

All our logic for type inference will live inside of the Infer monad. Which is a monad transformer stack
of ExcpetT + State, allowing various error reporting and statefully holding the fresh name supply.

type Infer a = ExceptT TypeError (State Unique) a
Running the logic in the monad results in either a type error or a resulting type scheme.

runInfer :: Infer (Subst, Type) -> Either TypeError Scheme
runInfer m = case evalState (runExceptT m) initUnique of
Left err -> Left err
Right res -> Right $ closeOver res

Substitution

Two operations that will perform quite a bit are querying the free variables of an expression and applying
substitutions over expressions.

fv(z) ==
fv(Az.e) = fv(e) — {z}
fv(eleg) = fv(el) U fV(ez)

Likewise the same pattern applies for type variables at the type level.

ftv(a) = {a}
ftv(m — 1) = £tv(m) U ftv(m)
ftv(Int) = o
ftv(Bool) = &
ftv(Va.t) = ftv(t) — {z}

Substitutions over expressions apply the substitution to local variables, replacing the named subexpres-
sion if matched. In the case of name capture a fresh variable is introduced.
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[z/e]x =€
[z/ely=y (y#=x)
[z/€'](e1e2) = ([x/€] e1)([x/e']ea)
[z/e'|(Ny.e1) = My.[z/ele y# 2 ¢ £v(e)

And likewise, substitutions can be applied element wise over the typing environment.

[t/s]0 ={y: [t/s]o|y: 0T}

Our implementation of a substitution in Haskell is simply a Map from type variables to types.
type Subst = Map.Map TVar Type

Composition of substitutions ( s1 o s2, s1 “compose s2) can be encoded simply as operations over
the underlying map. Importantly note that in our implementation we have chosen the substitution to
be left-biased, it is up to the implementation of the inference algorithm to ensure that clashes do not
occur between substitutions.

nullSubst :: Subst
nullSubst = Map.empty

compose :: Subst -> Subst -> Subst
sl ‘compose‘ s2 = Map.map (apply sl) s2 ‘Map.union® sl

The implementation in Haskell is via a series of implementations of a Substitutable typeclass which
exposes the apply which applies the substitution given over the structure of the type replacing type
variables as specified.

class Substitutable a where
apply :: Subst -> a -> a
ftv :: a —-> Set.Set TVar

instance Substitutable Type where
apply _ (TCon a) = TCon a
apply s t@(TVar a) = Map.findwWithDefault t a s
apply s (t1 ‘TArr¢ t2) = apply s t1 ‘TArr‘¢ apply s t2

ftv TCon{} Set.empty
ftv (TVar a) = Set.singleton a
ftv (tl ‘TArr¢ t2) = ftv tl ‘Set.union‘ ftv t2

instance Substitutable Scheme where
apply s (Forall as t) = Forall as $ apply s’ t

84



where s’ = foldr Map.delete s as
ftv (Forall as t) = ftv t ‘Set.difference‘ Set.fromList as

instance Substitutable a => Substitutable [a] where

apply = fmap . apply
ftv = foldr (Set.union . ftv) Set.empty

instance Substitutable TypeEnv where
apply s (TypeEnv env) = TypeEnv $ Map.map (apply s) env
ftv (TypeEnv env) = ftv $ Map.elems env

Throughout both the typing rules and substitutions we will require a fresh supply of names. In this naive
version we will simply use an infinite list of strings and slice into n’th element of list per a index that we
hold in a State monad. This is a simplest implementation possible, and later we will adapt this name
generation technique to be more robust.

letters :: [String]
letters = [1..] >>= flip replicateM [’a’..’z’]

fresh :: Infer Type
fresh = do
s <- get
put s{count = count s + 1}
return $ TVar $ TV (letters !! count s)

The creation of fresh variables will be essential for implementing the inference rules. Whenever we
encounter the first use a variable within some expression we will create a fresh type variable.

Unification

Central to the idea of inference is the notion unification. A unifier is a function s for two expressions e;
and ey is a relation such that:

s := [ng/mo,n1/mai, ..., ni/mg)[sler = [s]ea
Two terms are said to be unifiable if there exists a unifying substitution set between them. A substitution

set is said to be confluent if the application of substitutions is independent of the order applied, i.e. if we
always arrive at the same normal form regardless of the order of substitution chosen.

The notation we'll adopt for unification is, read as two types 7, 7/ are unifiable by a substitution s.

T~T 158

Such that:
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Two identical terms are trivially unifiable by the empty unifier.

c~ec:l]

The unification rules for our little HM language are as follows:

c~c:] (Uni-Const)
a~a:l (Uni-Var)
o g fevlr) (Uni-VarLeft)
a~T:[a)/T]
a ¢ ftv(r) . .
T~ ala/r (Uni-VarRight)
7'1’\/7'{ 191 [91]7’2’\/[91}7'2/202 .
T1Ty ~ T{ T4 : 02 0 61 (Uni-Con)
T1 ~ T{ . 01 [91]7’2 ~ [91}7’2/ . 92 (Uni—Al‘l‘OW)

TL— To~T) = Ty 0200

There is a precondition for unifying two variables known as the occurs check which asserts that if we are
applying a substitution of variable x to an expression e, the variable z cannot be free in e. Otherwise
the rewrite would diverge, constantly rewriting itself. For example the following substitution would not
pass the occurs check and would generate an infinitely long function type.

[x/z — x]

The occurs check will forbid the existence of many of the pathological livering terms we discussed when
covering the untyped lambda calculus, including the omega combinator.

occursCheck :: Substitutable a => TVar -> a -> Bool
occursCheck a t = a ‘Set.member®¢ ftv t

The unify function lives in the Infer monad and yields a subsitution:

unify :: Type -> Type -> Infer Subst
unify (1 ‘TArr¢ r) (1’ ‘TArr¢ r’) = do
sl <- unify 1 U’
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s2 <- unify (apply sl r) (apply sl r?’)
return (s2 ‘compose‘ sl)

unify (TVvar a) t = bind a t

unify t (Tvar a) = bind a t

unify (TCon a) (TCon b) | a == b = return nullSubst
unify tl1 t2 = throwError $ UnificationFail t1 t2

bind :: TVar -> Type -> Infer Subst

bind a t | t == TVar a return nullSubst
| occursCheck a t throwError $ InfiniteType a t
| otherwise return $ Map.singleton a t

Generalization and Instantiation

At the heart of Hindley-Milner is two fundamental operations:

* Generalization: Converting a 7 type into a o type by closing over all free type variables in a type
scheme.

* Instantiation: Converting a o type into a 7 type by creating fresh names for each type variable
that does not appear in the current typing environment.

F'ke:o a¢ftv(l)

I'Fe:Va.o (T-Gen)
I'kFe:o; o1 C oy
I'Fe:oq (T-nst)

The T operator in the (T-Inst) rule indicates that a type is an instantiation of a type scheme.

va.Tg E T1

A type 7 is a instantiation of a type scheme o = Va.7 if there exists a substitution [s]5 = / for all
B € £tv(o) so that 71 = [s]72. Some examples:

Va.a — a C Int — Int
Ya.a —-aC b—b
Vab.a — b — a C Int — Bool — Int

These map very intuitively into code that simply manipulates the Haskell Set objects of variables and
the fresh name supply:
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instantiate :: Scheme -> Infer Type
instantiate (Forall as t) = do
as’ <- mapM (const fresh) as
let s = Map.fromList $ zip as as’
return $ apply s t

generalize :: TypeEnv -> Type -> Scheme
generalize env t = Forall as t
where as = Set.toList $ ftv t ‘Set.difference® ftv env

By convention let-bindings are generalized as much as possible. So for instance in the following definition
f is generalized across the body of the binding so that at each invocation of f it is instantiated with fresh

type variables.

Poly> let f = (\x -> x) 1in let g = (f True) in f 3
3 ¢ Int

In this expression, the type of f is generated at the let definition and will be instantiated with two
different signatures. At call site of f it will unify with Int and the other unify with Bool.

By contrast, binding f in a lambda will result in a type error.

Poly> (\f -> let g = (f True) in (f 3)) (\x -> x)
Cannot unify types:

Bool
with

Int

This is the essence of let generalization.

Typing Rules

And finally with all the typing machinery in place, we can write down the typing rules for our simple
little polymorphic lambda calculus.

infer :: TypeEnv -> Expr -> Infer (Subst, Type)

The infer maps the local typing environment and the active expression to a 2-tuple of the partial
unifier solution and the intermediate type. The AST is traversed bottom-up and constraints are solved
at each level of recursion by applying partial substitutions from unification across each partially inferred
subexpression and the local environment. If an error is encountered the throwError is called in the
Infer monad and an error is reported.
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infer :: TypeEnv -> Expr -> Infer (Subst, Type)
infer env ex = case ex of

Var x -> lookupEnv env x

Lam x e -> do
tv <- fresh
let env’ = env ‘extend® (x, Forall [] tv)
(s1, tl) <- dinfer env’ e
return (sl, apply sl tv ‘TArr‘ tl)

App el e2 -> do
tv <- fresh
(sl, tl) <- dnfer env el
(s2, t2) <- infer (apply sl env) e2
s3 <- unify (apply s2 tl1l) (TArr t2 tv)
return (s3 ‘compose‘ s2 ‘compose‘ sl, apply s3 tv)

Let x el e2 -> do
(s1, tl) <- dinfer env el
let env’ apply sl env
t’ = generalize env’ tl1
(s2, t2) <- 1dinfer (env’ ‘extend® (x, t’)) e2
return (sl ‘compose‘ s2, t2)

If cond tr fl -> do
(sl, tl) <- 1dinfer env cond
(s2, t2) <- 1dinfer env tr
(s3, t3) <- infer env fl
s4 <- unify tl typeBool
s5 <- unify t2 t3
return (s5 ‘compose‘ s4 ‘compose‘ s3 ‘compose‘ s2 ‘compose‘ sl, apply s5 t2)

Fix el -> do
(sl, t) <- dinfer env el
tv <- fresh
s2 <- unify (TArr tv tv) t
return (s2, apply sl tv)

Op op el e2 -> do
(sl, tl) <- dinfer env el
(s2, t2) <- dinfer env e2
tv <- fresh
s3 <- unify (TArr t1 (TArr t2 tv)) (ops Map.! op)
return (sl ‘compose‘ s2 ‘compose‘ s3, apply s3 tv)
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Lit (LInt _) -> return (nullSubst, typelnt)
Lit (LBool _) -> return (nullSubst, typeBool)

Let’s walk through each of the rule derivations and look how it translates into code:
T-Var

The T-Var rule, simply pull the type of the variable out of the typing context.
Var x -> lookupEnv env x

The function lookupVar looks up the local variable reference in typing environment and if found it
instantiates a fresh copy.

lookupEnv :: TypeEnv -> Var -> Infer (Subst, Type)
lookupEnv (TypeEnv env) x = do
case Map.lookup x env of
Nothing -> throwError $ UnboundVariable (show x)
Just s -> do t <- dnstantiate s
return (nullSubst, t)

rz:o€el

I'Fx:0o (T-Var)

T-Lam

For lambdas the variable bound by the lambda is locally scoped to the typing environment and then the

body of the expression is inferred with this scope. The output type is a fresh type variable and is unified
with the resulting inferred type.

Lam x e —-> do
tv <- fresh
let env’ = env ‘extend® (x, Forall [] tv)
(sl, tl) <- 1dinfer env’ e
return (sl1, apply sl tv ‘TArr‘ t1)

I'z:mbe:m
I'FAXx.e:mp — 1

(T-Lam)

T-App

For applications, the first argument must be a lambda expression or return a lambda expression, so know
it must be of form t1 -> t2 but the output type is not determined except by the confluence of the two
values. We infer both types, apply the constraints from the first argument over the result second inferred
type and then unify the two types with the excepted form of the entire application expression.
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App el e2 -> do
tv <- fresh
(sl, tl) <- dnfer env el
(s2, t2) <- infer (apply sl env) e2
s3 <- unify (apply s2 tl) (TArr t2 tv)
return (s3 ‘compose‘ s2 f‘compose‘ sl, apply s3 tv)

I'kel:mm —m I'kFey:m

'k €1 €2 1 T2 (T—App)

T-Let

As mentioned previously, let will be generalized so we will create a local typing environment for the body
of the let expression and add the generalized inferred type let bound value to the typing environment of

the body.

Let x el e2 -> do
(s1l, tl) <- infer env el
let env’ = apply sl env
t’ = generalize env’ tl
(s2, t2) <- 1infer (env’ ‘extend® (x, t’)) e2
return (sl ‘compose‘ s2, t2)

I'kei:o INx:okey: T

(T-Let)

I'Fletz=ejines: 7

T-BinOp

There are several builtin operations, we haven’t mentioned up to now because the typing rules are trivial.
We simply unify with the preset type signature of the operation.

Op op el e2 -> do
(sl, tl) <- dinfer env el
(s2, t2) <- infer env e2
tv <- fresh
s3 <- unify (TArr tl1 (TArr t2 tv)) (ops Map.! op)
return (sl ‘compose‘ s2 ‘compose‘ s3, apply s3 tv)

ops :: Map.Map Binop Type
ops = Map.fromList [
(Add, (typeInt ‘TArr¢ (typeInt ‘TArr‘ typelnt)))
, (Mul, (typeInt ‘TArr¢ (typeInt ‘TArr‘¢ typelnt)))
, (Sub, (typeInt ‘TArr¢ (typeInt ‘TArr‘¢ typelnt)))
, (Eql, (typeInt ‘TArr¢ (typeInt ‘TArr‘ typeBool)))
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:Int — Int — Int
:Int =& Int — Int
: Int — Int — Int
: Int — Int — Bool

X +

AAAA
USRI

Literals

The type of literal integer and boolean types is trivially their respective types.

I'Fn:Int (T-Int)
I' F True : Bool (T-True)
(T-False)

I' - False : Bool

Constraint Generation

The previous implementation of Hindley Milner is simple, but has this odd property of intermingling
two separate processes: constraint solving and traversal. Let’s discuss another implementation of the
inference algorithm that does not do this.

In the constraint generation approach, constraints are generated by bottom-up traversal, added to a ordered
container, canonicalized, solved, and then possibly back-substituted over a typed AST. This will be the
approach we will use from here out, and while there is an equivalence between the “on-line solver”, using
the separate constraint solver becomes easier to manage as our type system gets more complex and we
start building out the language.

Our inference monad now becomes a RWST ( Reader-Writer-State Transformer ) + Except for typing
errors. The inference state remains the same, just the fresh name supply.

-- | Inference monad
type Infer a = (RWST

Env -— Typing environment

[Constraint] -- Generated constraints

InferState -- Inference state

(Except -- Inference errors
TypeError)

a) -- Result

-- | Inference state
data InferState = InferState { count :: Int }

Instead of unifying type variables at each level of traversal, we will instead just collect the unifiers inside
the Writer and emit them with the uni function.

92



-- | Unify two types
uni :: Type -> Type -> Infer ()
uni tl t2 = tell [(t1, t2)]

Since the typing environment is stored in the Reader monad, we can use the local to create a locally
scoped additions to the typing environment. This is convenient for typing binders.

-- | Extend type environment
inEnv :: (Name, Scheme) -> Infer a -> Infer a
inEnv (x, sc) m = do
let scope e = (remove e x) ‘extend® (x, sc)
local scope m

Typing

The typing rules are identical, except they now can be written down in a much less noisy way that isn’t
threading so much state. All of the details are taken care of under the hood and encoded in specific
combinators manipulating the state of our Infer monad in a way that lets focus on the domain logic.

infer :: Expr -> Infer Type

infer expr = case expr of
Lit (LInt _) -> return $ typelnt
Lit (LBool _) -> return $ typeBool

Var x -> lookupEnv x

Lam x e -> do
tv <- fresh
t <- inEnv (x, Forall [] tv) (infer e)
return (tv ‘TArr‘ t)

App el e2 -> do
tl <- dinfer el
t2 <- dinfer e2
tv <- fresh
uni tl (t2 ‘TArr¢ tv)
return tv

Let x el e2 -> do
env <- ask
tl <- dinfer el
let sc = generalize env tl
t2 <- dinEnv (x, sc) (infer e2)
return t2
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Fix el -> do
tl <- dinfer el
tv <- fresh
uni (tv ‘TArr‘ tv) t1
return tv

Op op el e2 -> do
tl <- dinfer el
t2 <- dinfer e2
tv <- fresh
let ul = t1 ‘TArr¢ (t2 ‘TArr¢ tv)
u2 = ops Map.! op
uni ul u2
return tv

If cond tr fl -> do
tl <- dinfer cond
t2 <- dinfer tr
t3 <- dinfer fl
uni tl typeBool
uni t2 t3
return t2

Constraint Solver

The Writer layer for the Infer monad contains the generated set of constraints emitted from inference
pass. Once inference has completed we are left with a resulting type signature full of meaningless unique
fresh variables and a set of constraints that we must solve to refine the type down to its principal type.

The constraints are pulled out solved by a separate Solve monad which holds the Unifier ( most general
unifier ) solution that when applied to generated signature will yield the solution.

type Constraint = (Type, Type)
type Unifier = (Subst, [Constraint])

-- | Constraint solver monad
type Solve a = StateT Unifier (ExceptT TypeError Identity) a

The unification logic is also identical to before, except it is now written independent of inference and
stores its partial state inside of the Solve monad’s state layer.

unifies :: Type -> Type -> Solve Unifier
unifies tl1 t2 | tl == t2 = return emptyUnifer
unifies (Tvar v) t = v ‘bind‘ t
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unifies t (TVar v) = v ‘bind‘ t
unifies (TArr tl1 t2) (TArr t3 t4) = unifyMany [tl, t2] [t3, t4]
unifies tl1 t2 = throwError $ UnificationFail tl1 t2

unifyMany :: [Type] -> [Type] -> Solve Unifier
unifyMany [] [] = return emptyUnifer
unifyMany (tl1 : tsl) (t2 : ts2) =
do (sul,csl) <- unifies tl t2
(su2,cs2) <- unifyMany (apply sul tsl) (apply sul ts2)
return (su2 ‘compose‘ sul, csl ++ cs2)
unifyMany tl t2 = throwError $ UnificationMismatch tl t2

The solver function simply iterates over the set of constraints, composing them and applying the resulting
constraint solution over the intermediate solution eventually converting on the most general unifier which
yields the final subsitution which when applied over the inferred type signature, yields the principal type
solution for the expression.

-— Unification solver
solver :: Solve Subst
solver = do
(su, cs) <- get
case cs of
[1] -> return su
((t1, t2): cs0) -> do
(sul, csl) <- unifies tl t2
put (sul ‘compose‘ su, csl ++ (apply sul cs0))
solver

This a much more elegant solution than having to intermingle inference and solving in the same pass,
and adapts itself well to the generation of a typed Core form which we will discuss in later chapters.

Worked Example

Example 1

Let’s walk through a few examples of how inference works for a few simple functions. Consider:
\ Xy z->x+y+z

The generated type from the infer function is simply a fresh variable for each of the arguments and
return type. This is completely unconstrained.

a->b->c->e

The constraints induced from T-BinOp are emitted as we traverse both of addition operations.
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l.a->b->d ~ Int ->Int -> Int
2.d ->c ->e ~ Int ->Int -> Int

By applying Uni-Arrow we can then deduce the following set of substitutions.

1. a ~ Int
2. b ~ Int
3. ¢ ~ Int
4. d ~ Int
5. e ~ Int

Substituting this solution back over the type yields the inferred type:

Int -> Int -> Int -> Int

Example 2

compose f g x = f (g x)

The generated type from the infer function is again simply a set of unique fresh variables.
a->b->c->e

Induced two cases of the T-App we get the following constraints.

1.b~c->d
2.a~d > e

These are already in a canonical form, but applying Uni-VarLeft twice we get the following trivial set of
substitutions.

l.b~c->d
2.a~d > e

compose :: forall c de. (d ->e) -> (c ->d) ->c -> e
If desired, you can rearrange the variables in alphabetical order to get:

compose :: forall a b c. (a ->b) -> (c ->a) ->c ->b
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Interpreter

Our evaluator will operate directly on the syntax and evaluate the results in into a Value type.

data Value
= VInt Integer
| VBool Bool
| VClosure String Expr TermEnv

The interpreter is set up an Identity monad. Later it will become a more complicated monad, but for
now its quite simple. The value environment will explicitly threaded around, and whenever a closure is
created we simply store a copy of the local environment in the closure.

type TermEnv = Map.Map String Value
type Interpreter t = Identity t

Our logic for evaluation is an extension of the lambda calculus evaluator implemented in previous chap-
ter. However you might notice quite a few incomplete patterns used throughout evaluation. Fear not
though, the evaluation of our program cannot “go wrong”. Each of these patterns represents a state that
our type system guarantees will never happen. For example, if our program did have not every variable
referenced in scope then it would never reach evaluation to begin with and would be rejected in our type
checker. We are morally correct in using incomplete patterns here!

eval :: TermEnv -> Expr -> Interpreter Value
eval env expr = case expr of

Lit (LInt k) -> return $ VInt k

Lit (LBool k) =-> return $ VBool k

Var x -> do
let Just v = Map.lookup x env
return v

Op op a b -> do
VInt a’ <- eval env a
VInt b’ <- eval env b
return $ (binop op) a’ b’

Lam x body ->
return (VClosure x body env)

App fun arg -> do
VClosure x body clo <- eval env fun
argv <- eval env arg
let nenv = Map.insert x argv clo
eval nenv body
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Let x e body -> do
e’ <- eval env e
let nenv = Map.insert x e’ env
eval nenv body

If cond tr fl -> do
VBool br <- eval env cond
if br == True
then eval env tr
else eval env fl

Fix e -> do
eval env (App e (Fix e))

binop :: Binop -> Integer -> Integer -> Value
binop Add a b = VInt $ a + b

binop Mul a b = VInt $ a x b
binop Sub a b = VInt $ a - b
binop Eql a b = VBool $ a == b

Interactive Shell

Our language has now grown out the small little shells we were using before, and now we need something
much more robust to hold the logic for our interactive interpreter.

We will structure our REPL as a monad wrapped around IState (the interpreter state) datatype. We will
start to use the repline library from here out which gives us platform independent readline, history, and
tab completion support.

data IState = IState
{ tyctx :: TypeEnv -- Type environment
, tmctx :: TermEnv -- Value environment

initState :: IState
initState = IState emptyTyenv emptyTmenv

type Repl a = HaskelineT (StateT IState IO) a

hoistErr :: Show e => Either e a -> Repl a
hoistErr (Right val) = return val
hoistErr (Left err) = do

1iftIO $ print err

abort
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Our language can be compiled into a standalone binary by GHC:

$ ghc --make Main.hs -o poly
$ ./poly
Poly>

At the top of our program we will look at the command options and allow three variations of commands.

$ poly # launch shell
$ poly +input.ml # launch shell with ’dinput.ml’ loaded
$ poly test input.ml # dump test for ’input.ml’ to stdout

main :: I0 ()
main = do
args <- getArgs
case args of
[1 -> shell (return ())
[fname] -> shell (load [fname])
["test”, fname] -> shell (load [fname] >> browse [] >> quit ())
_ —> putStrLn ”invalid arguments”

The shell command takes a pre action which is run before the shell starts up. The logic simply evaluates
our Repl monad into an IO and runs that from the main function.

shell :: Repl a -> I0 ()
shell pre
= flip evalStateT 1initState
$ evalRepl ”Poly> ” cmd options completer pre

The cmd driver is the main entry point for our program, it is executed every time the user enters a line
of input. The first argument is the line of user input.

cmd :: String -> Repl ()
cmd source = exec True (L.pack source)

The heart of our language is then the exec function which imports all the compiler passes, runs them
sequentially threading the inputs and outputs and eventually yielding a resulting typing environment
and the evaluated result of the program. These are monoidally joined into the state of the interpreter
and then the loop yields to the next set of inputs.

exec :: Bool -> L.Text -> Repl ()

exec update source = do
-- Get the current interpreter state
st <- get
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-- Parser ( returns AST )
mod <- hoistErr $ parseModule ”<stdin>” source

-- Type Inference ( returns Typing Environment )
tyctx’ <- hoistErr $ inferTop (tyctx st) mod

-- Create the new environment

let st’ = st { tmctx = foldl’ evalDef (tmctx st) mod
, tyctx = tyctx’ <> (tyctx st)
}

-— Update the interpreter state
when update (put st’)

Repline also supports adding special casing certain sets of inputs so that they map to builtin commands
in the compiler. We will implement three of these.

Command Action

:browse Browse the type signatures for a program
:load <file> Load a program from file

1type Show the type of an expression

(quit Exit interpreter

Their implementations are mostly straightforward.

options :: [(String, [String] -> Repl ())]
options = [
(”1load” , load)
(”browse” , browse)
, (quit” , quit)
(”type” , Main.typeof)

-- :browse command
browse :: [String] -> Repl ()
browse _ = do
st <- get
1iftIO $ mapM_ putStrLn $ ppenv (tyctx st)

-- :load command
load :: [String] -> Repl ()
load args = do
contents <- 1iftIO $ L.readFile (unwords args)
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exec True contents

-- :type command
typeof :: [String] -> Repl ()
typeof args = do
st <- get
let arg = unwords args
case Infer.typeof (tyctx st) arg of
Just val -> 1iftIO $ putStrLn $ ppsignature (arg, val)
Nothing -> exec False (L.pack arg)

-— :quit command

quit :: a -> Repl ()

quit _ = 1iftIO $ exitSuccess

Finally tab completion for our shell will use the interpreter’s typing environment keys to complete on
the set of locally defined variables. Repline supports prefix based tab completion where the prefix of the
current command will be used to determine what to tab complete. In the case where we start with the
command : load we will instead tab complete on filenames in the current working directly instead.

completer :: CompleterStyle (StateT IState I0)
completer = Prefix (wordCompleter comp) defaultMatcher

-— Prefix tab completer
defaultMatcher :: MonadIO m => [(String, CompletionFunc m)]
defaultMatcher = [

(”:1load” , fileCompleter)

-- Default tab completer
comp :: (Monad m, MonadState IState m) => WordCompleter m
comp n = do
let cmds = [”:load”, ”:browse”, ”:quit”, ”:type”]
TypeEnv ctx <- gets tyctx
let defs = Map.keys ctx
return $ filter (isPrefixOf n) (cmds ++ defs)

Observations

There we have it, our first little type inferred language! Load the poly interpreter by running ghci
Main.hs and the call the main function.

$ ghci Main.hs

B: main

Poly> :load test.ml
Poly> :browse
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Try out some simple examples by declaring some functions at the toplevel of the program. We can
query the types of expressions interactively using the :type command which effectively just runs the
expression halfway through the pipeline and halts after typechecking.

Poly> let id x = x
Poly> 1let const x y
Poly> let twice x = x + X

1
x

Poly> :type -id
id : forall a. a -> a

Poly> :type const
const : forall a b. a -> b -> a

Poly> :type twice
twice : Int -> Int

Notice several important facts. Our type checker will now flat our reject programs with scoping errors
before interpretation.

Poly> \x -> vy

M\,

Not in scope: "y
Also programs that are also not well-typed are now rejected outright as well.

Poly> 1 + True
Cannot unify types:
Bool
with
Int

The omega combinator will not pass the occurs check.

Poly> \x -> x x
Cannot construct the the infinite type: a = a -> b

The file test.ml provides a variety of tests of the little interpreter. For instance both fact and fib
functions uses the fixpoint to compute Fibonacci numbers or factorials.

let fact = fix (\fact -> \n ->
if (n == 0)
then 1
else (n x (fact (n-1))));
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let rec fib n =
if (n == 0)
then 0
else if (n==1)
then 1
else ((fib (n-1)) + (fib (n-2)));

Poly> :type fact
fact : Int -> Int

Poly> fact 5
120

Poly> fib 16
610

Full Source

* Doly
* Poly - Constraint Generation
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ProtoHaskell

Design of ProtoHaskell

Now that we've completed our simple little ML language, let’s discuss the road ahead toward building a
more complex language we'll call ProtoHaskell that will eventually become the full Fun language.

Language Chapters  Description

Poly 1-8 Minimal type inferred ML-like language.
ProtoHaskell 8 - 18 Interpreted minimal Haskell subset.
Fun 18-27  ProtoHaskell with native code generator.

The defining feature of ProtoHaskell is that is independent of an evaluation model, so hypothetically
one could write either a lazy or strict backend and use the same frontend.

Before we launch into writing compiler passes let’s look at the overview of where we're going, the scope
of what we're going to do, and what needs to be done to get there. We will refer to concepts that are not yet
introduced, so keep is meant ro be referred to as a high-level overview of the ProtoHaskell compiler pipeline.

Haskell: A Rich Language

Haskell itself is a beautifully simple language at its core, although the implementation of GHC is arguably
anything but simple! The more one digs into the implementation the more it becomes apparent that a
lot of care and forethought was given to making the frontend language as expressive as it is. Many of
these details require a great detail of engineering work to make them work as seamlessly as they do.

Consider this simple Haskell example but note how much of an extension this is from our simple little
ML interpreter.

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)
| pred x x : filter pred xs
| otherwise = filter pred xs

Consider all the things that are going on just in this simple example.

* Lazy evaluation
* Custom datatypes
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* Higher order functions

* Parametric polymorphism

* Function definition by pattern matching

* Pattern matching desugaring

* Guards to distinguish sub-cases

* Type signature must subsume inferred type
* List syntactic sugar ( value/pattern syntax )

Clearly we're going to need a much more sophisticated design, and we'll likely be doing quite a bit more
bookkeeping about our program during compilation.

Scope

Considering our project is intended to be a simple toy language, we are not going to implement all
of Haskell 2010. Doing so in its entirety would actually be a fairly involved effort. However we will
implement a sizable chunk of the functionality, certainly enough to write non-trivial programs and
implement most of the standard Prelude.

Things we will implement:

* Indentation sensitive grammar
* DPattern matching

* Algebraic datatypes

* Where statements

* Recursive functions/datatypes
* Operator sections

* Implicit let-rec

* List and tuple sugar

* Records

* Custom operators

* Do-notation

* Type annotations

* Monadic IO

* Typeclasses

* Arithmetic primops

* Type synonyms

* List comprehensions

Things we will not implement are:

¢ Overloaded literals
e GADTs

* Polymorphic recursion
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* Any GHC-specific language extensions.
* Newtypes

* Module namespaces

* Operator parameters

* Defaulting rules

* Exceptions

e DParallelism

* Software Transactional Memory

* Foreign Function Interface

Now if one feels so inclined one could of course implement these features on top our final language, but
they are left as an exercise to the reader!

This of course begs the question of whether or not our language is “a Haskell”. In the strictest sense, it
will not be since it doesn’t fully conform to either the Haskell 98 or Haskell 2010 language specifications.
However in terms of the colloquial usage of the term Haskell, there does seem to be some growing feeling
that the “Haskell language family” does exist as a definable subset of the functional programming design
space, although many people disagree what its defining features are. In this sense we will most certainly
be writing a language in the Haskell family.

Intermediate Forms

The passes between each of the phases make up the main compilation pipeline .

Parse — Rename — Typecheck —» Desugar —#» ToCore —»{ Evaluate

For ProtoHaskell our pipeline consists of the transitions between four intermediate forms of the program.

Source —» Frontend —» Core — PHOAS

* The Source, the textual representation of the program from a file or user input. This is stored in a
Text type.

* The Frontend source, the untyped AST generated from the parser.

* The Core, the explicitly typed, desugared form of the program generated after type inference.
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* The PHOAS, the type-erased Core is transformed into Haskell expressions by mapping lambda

expressions in our language directly into Haskell lambda expressions and then evaluated using the

Haskell runtime.

Pass Rep Haskell Type
Parsing Source Text.Text
Desugaring Frontend Frontend.Expr
Typechecking  Core Core.Expr
Evaluation PHOAS cCoreEval.ExprP

For our later Fun language our pipeline builds on top of the ProtoHaskell but instead of going to an
interpreter it will be compiled into native code through the native code generator (on top of LLVM) and
compiled into a binary executable or evaluated by a just-in-time (JIT) compiler.

Pass Rep Haskell Type

Parsing Source Text.Text

Desugaring Frontend Frontend.Expr
Typechecking Core Core.Expr
Transformation STG STG.Expr
Transformation Imp Imp.Expr

Code Generation LLVM LLVM.General.Module

CompilerM

The main driver of the compiler will be a ExceptT + State + I0 transformer stack . All other passes and
transformations in the compiler will hang off of this monad, which encapsulates the main compilation

pipeline.

type CompilerMonad =
ExceptT Msg
(StateT CompilerState IO)

data CompilerState = CompilerState
{ _fname Maybe FilePath
, _imports [FilePath]
, _src Maybe L.Text
, _ast Maybe Syn.Module
, _tenv Env.Env
, _kenv Map.Map Name Kind
, _cenv :: ClassEnv.ClassEnv
, _cast Maybe Core.Module
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, _flags

, _venv
, _denv
, _clenv

} deriving (Eq, Show)

Flags.Flags
CoreEval.ValEnv Core.Expr —-— " Core finterpreter environment
DataEnv.DataEnv

ClassEnv.ClassHier

-- N Compiler flags

-— M Entity dictionary
-— M Typeclass hierarchy

The compiler itself will have several entry points, expr for interactive evaluation that expects an expres-
sion object and joins it into accumulated interactive environment. And mod1 path that compile whole

modules.

Throughout the next 10 chapters we will incrementally create a series of transformations with the fol-
lowing type signatures.

parseP :: FilePath -> L.Text -> CompilerM Syn.Module
dataP :: Syn.Module -> CompilerM Syn.Module

groupP :: Syn.Module -> CompilerM Syn.Module

renameP :: Syn.Module -> CompilerM Syn.Module
desugarP :: Syn.Module -> CompilerM Syn.Module

inferP :: Syn.Module -> CompilerM Core.Module

evalP :: Core.Module -> CompilerM ()

The code path for mod1 is then simply the passes composed with the Kleisli composition operator to
form the composite pipeline for compiling modules.

(>=>) :: Monad m => (a ->mb) > (b->mc) ->a->mc

And that’s basically the entire structure of the compiler. It’s just a pipeline of monadic actions for each
pass rolled up inside of CompilerM.

modl :: FilePath -> L.Text -> CompilerM ()

modl fname

= parseP fname

>=> dataP
>=> groupP
>=> renameP
>=> desugarP
>=> qnferP
>=> evalP

Engineering Overview

REPL

It is extremely important to have an interactive shell to be able to interactively explore the compilation
steps and intermediate forms for arbitrary expressions. GHCi does this very well, and nearly every
intermediate form is inspectable. We will endeavor to recreate this experience with our toy language.
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If the ProtoHaskell compiler is invoked either in GHCi or as standable executable, you will see a similar
interactive shell.

| ProtoHaskell Compiler 0.1.0

| Copyright (c) 2013-2015 Stephen Diehl
/ / | Released under the MIT License

|

|

LT
[ 0 I A A
[
-

[ PO D A VR Type :help for help

Compiling module: prelude.fun

®> id (1+2)

3

¥> :type (>>=)

(>>=) :: Monad m =>ma -> (a ->mb) ->mb

K> :set -ddump-rn
B> :load test.fun

Command line conventions will follow the Haskell’s naming conventions. There will be a strong empha-
sis on building debugging systems on top of our architecture so that when subtle bugs creep up you will
have the tools to diagnose the internal state of the type system and detect flaws in the implementation.

Command Action

:browse Browse the type signatures for a program

:load <file>  Load a program from file

:reload Run the active file

tedit Edit the active file in system editor

icore Show the core of an expression or program
:module Show active modules imports

:source Show the source code of an expression or program
1type Show the type of an expression

tkind Show the kind of an expression

:set <flag> Set a flag

:unset <flag> Unseta flag

rekg <flag> Start the EKG profiler as a background process
:constraints  Dump the typing constraints for an expression
tquit Exit interpreter

The most notable difference is the very important : core command which will dump out the core repre-
sentation of any expression given in the interactive shell. Also the : constraints which will interactively
walk you through the type checker’s reasoning about it how derived the type it did for a given expression.

ProtoHaskell> :type plus
plus :: forall a. Num a => a -> a -> a

109



ProtoHaskell> :core 1d
id :: forall a. a -> a
id = \(dsl : a) -> a

ProtoHaskell> :core compose
compose :: forall cde. (d ->e) -> (c ->d) ->c -> e
compose = \(dsl : d -> e)

(ds2 : ¢ -> d)

(ds3 : ¢c) —>

(ds1 (ds2 ds3))

The flags we use also resemble GHC’s and allow dumping out the pretty printed form of each of the
intermediate transformation passes.

®* —-ddump-parsed
* —-ddump-desugar
® —ddump-rn

¢ —ddump-infer

* —-ddump-core

* —-ddump-types

¢ —-ddump-stg
* —ddump-imp
® —ddump-c

¢ —ddump-11lvm
® —ddump-asm
® —ddump-to-file

The implementation of the interactive shell will use a custom library called repline , which is a higher-
level wrapper on top of haskeline made to be more pleasant when writing interactive shells.

Parser

We will use the normal Parsec parser with a few extensions. We will add indentation sensitive parser so
that block syntax ( where statements, let statements, do-notation ) can be parsed.

main :: I0 ()
main = do
putStrLn msg
where
msg = ”Hello World”

In addition we will need to allow for the addition of infix operators from be user-defined declarations,
and allow this information to be used during parsing.
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infix1l 6 +
infixl 7 *

f=1+2x%x3

Renamer

After parsing we will traverse the entire AST and rename all user-named variables to machine generated
names and eliminate any name-shadowing. For example in the following ambiguous binder will replace
the duplicate occurrence of x with a fresh name.

Xy =\gXx —>x +y
fxy=\gad -> a0 + vy

We will also devise a general method of generating fresh names for each pass such that the names gener-
ated are uniquely identifiable to that pass and cannot conflict with later passes.

Ensuring that all names are unique in the syntax tree will allow us more safety later on during program
transformation, to know that names cannot implicitly capture and the program can be transformed
without changing its meaning.

Datatypes

User defined data declarations need to be handled and added to the typing context so that their use
throughout the program logic can be typechecked. This will also lead us into the construction of a
simple kind inference system, and the support of higher-kinded types.

data Bool = False | True
data Maybe a = Nothing | Just a
data T1 f a = T1 (f a)

Each constructor definition will also introduce several constructor functions into the Core representation
of the module. Record types will also be supported and will expand out into selectors for each of the
various fields.

Desugaring

Pattern matching is an extremely important part of a modern functional programming, but the imple-
mentation of the pattern desugaring is remarkably subtle. The frontend syntax allows the expression of
nested pattern matches and incomplete patterns, both can generate very complex splitting trees of case
expressions that need to be expanded out recursively. We will use the algorithm devised Phil Wadler to
perform this transformation.

Multiple Equations
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For instance the following toplevel pattern for the xor function is transformed into the following nested
set of case statements:

-- Frontend

xor False False = False;
xor False True = True;
xor True False = True;
xor True True = False;

-- Desugared
xor :: Bool -> Bool -> Bool
xor = \_a _b -> case _a of {
False -> case _b of {
False -> False;
True -> True
}s;
True -> case _b of {
False -> True;
True -> False

Constructor Patterns

Toplevel declarations in the frontend language can consist of patterns for on the right-hand-side of the
declaration, while in the Core language these are transformed into case statements in the body of the
function.

-- Frontend
f (Left 1)
f (Right r)

1
T o

-- Desugared

f x = case x of
Left 1 -> a
Right r => b

Nested Patterns

The frontend language also allows nested constructors in a single pattern, while in the Core language
these are expanded out into two case statements which scrutinize only one level of pattern.

-- Frontend
f x = case x of
Just (Just y) > vy
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-— Desugared
f x = case x of
Just _a -> case _a of
Just _b -> _b

There are many edge cases of pattern matching that we will have to consider. The confluence of all them
gives rise to a rather complex set of AST rewrites:

* Multiple arguments

* Overlapping patterns

* Literal patterns

* Nested patterns

* Non-exhaustive equations
* Conditional equations

* Non-linear patterns

On top of pattern matching we will implement the following more trivial syntactic sugar translations:

* Expand if/then statements into case expressions.
* Expand pattern guards into case expressions.

* Expand out do-notation for monads.

* Expand list syntactic sugar.

* Expand tuple syntactic sugar.

* Expand out operator sections.

* Expand out string literals.

* Expand out numeric literals.

We will however punt on an important part of the Haskell specification, namely overloaded literals. In
GHC Haskell numeric literals are replaced by specific functions from the Num or Fractional typeclasses.

-- Frontend

42 :: Num a => a

3.14 :: Fractional a => a

-- Desugared

fromInteger (42 :: Integer)
fromRational (3.14 :: Rational)

We will not implement this, as it drastically expands the desugarer scope.

We will however follow GHC’s example in manifesting unboxed types are first class values in the language
so literals that they appear in the AST rewritten in terms of the wired-in constructors (Int#, Char#,
Addr#, etc).
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I#
C#

Int# -> Int
Char# -> Char

ProtoHaskell> :core 1

I# 1#

ProtoHaskell> :core 1 + 2

plus (I# 1#) (I# 2#)

ProtoHaskell> :core ”snazzleberry”
unpackCString# ”snazzleberry”#

Core

The Core language is the result of translation of the frontend language into an explicitly typed form. Just
like Haskell we will use a System-F variant, although unlike GHC we will effectively just be using vanilla
System-F without all of the extensions ( coercions, equalities, roles, etc ) that GHC uses to implement
more complicated features like GADTs and type families.

This is one of the most defining feature of GHC Haskell, is its compilation into a statically typed inter-
mediate Core language. It is a well-engineers detail of GHC’s design that has informed much of how
Haskell the language has evolved as a language with a exceedingly large frontend language that all melts
away into a very tiny concise set of abstractions. Just like GHC we will extract all our language into a

small core, with just a few constructors.

data Expr

App Expr Expr

Var Var

Lam Name Type Expr
Case Expr [Alt]

Let Bind Expr

Lit Literal
Placeholder Name Type

data Var

Id Name Type
TyVar Name Kind

The types and kind types are also equally small.

data Type

TVar TVar

TCon TyCon

TApp Type Type

TArr Type Type

TForall [Pred] [TVar] Type
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data Kind

KStar

Arr Kind Kind
Prim

KVar Name

| K
| K
|

Since the Core language is explicitly typed, it is trivial to implement an internal type checker for. Run-
ning the typechecker on the generated core is a good way to catch optimization, desugaring bugs, and
determine if the compiler has produced invalid intermediate code.

Type Classes

Typeclasses are also remarkably subtle to implement. We will implement just single parameter typeclasses
and use the usual dictionary passing translation when compiling the frontend to Core. Although the
translation and instance search logic is not terribly complicated, it is however very verbose and involves
a lot of bookkeeping about the global typeclass hierarchy.

For example the following simplified Num typeclass generates quite a bit of elaborated definitions in the
Core language to generate the dictionary and selector functions for the overloaded plus function.

class Num a where

plus :: a -> a -> a
mult :: a -> a -> a
sub :: a -> a -> a

instance Num Int where
plus = plusInt
mult multInt
sub subInt

plusInt :: Int -> Int -> Int
plusInt (I# a) (I# b) = I# (plusInt# a b)

This expands into the following set of Core definitions.

plusInt :: Int -> Int -> Int
plusInt = \(dsl : Int)
(ds2 : Int) ->
case dsl of {

I# ds8 ->
case ds2 of {
I# ds9 ->

case (plusInt# ds8 ds9) of {
__DEFAULT {ds5} -> (I# ds5)
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dplus :: forall a. DNum a -> a -> a -> a
dplus = \(tpl : DNum a) ->
case tpl of {
DNum a b ¢ -> a

1
plus :: forall e. Num e => e -> e -> e
plus = \(SdNum_a : DNum e)
(ds1 : e)

(ds2 : e) —>
(dplus $dNum_a dsl ds2)

Our typeclass infrastructure will be able to support the standard typeclass hierarchy from the Prelude.
Our instance search mechanism will be subject to the same restriction rules that GHC enforces.

¢ Paterson condition
* Coverage condition
¢ Bounded context stack

Type Checker

The type checker is largest module and probably the most nontrivial part of our compiler. The module
consists of roughly 1200 lines of code. Although the logic is not drastically different than the simple little
HM typechecker we wrote previously, it simply has to do more bookkeeping and handle more cases.

The implementation of the typechecker will be split across four modules:

* Infer.hs - Main inference driver

* Unify.hs - Unification logic

* ClassEnv.hs - Typeclass instance resolution
* Elaboration.hs - Typeclass elaboration

The monad itself is a RWST + Except stack, with State holding the internal state of the inference engine
and Writer gathering the generated constraint set that is passed off to the solver.

-- | Inference monad
type InferM = RWST

Env -- Typing environment

[Constraint] -— Generated constraints

InferMState -- Inference state
(Except -- Inference errors
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TypeError)

-- | Inference state
data InferMState = InferMState

{ count ;0 Int -- A Name supply

, preds :: [Pred] -- N Typeclass predicates

, skolems :: Skolems -- N Skolem scope

, overloads :: ClassEnv -- N Overloaded -identifiers
, active :: Name -— N Active function name

, classh :: ClassHier -- M Typeclass hierarchy

}

In Fun we will extend the simple type checker with arbitrary rank polymorphism (i.e. RankNTypes in
GHCQ). This is actually required to implement typeclasses in their full generality, although in ProtoHaskell
we will cheat a little bit.

Interpreter

For ProtoHaskell we will actually directly evaluate the resulting Core expressions in an interpreter. By
virtue of us translating the expressions into Haskell expressions we will get lazy evaluation almost for
free and will let us run our programs from inside of the interactive shell.

sieve :: [Int] -> [Int]
sieve [] = []
sieve (p:ps) = p : sieve (filter (nonMultiple p) ps)

nonMultiple :: Int -> Int -> Bool
nonMultiple p n = ((n/p)*p) /= n

primes :: [Int]
primes = sieve [2..]

ProtoHaskell> take 5 (cycle [1,2])
[1,2,1,2,1]

ProtoHaskell> take 5 primes
[1,2,5,7,11]

Error Reporting

We will do quite a bit of error reporting for the common failure modes of the type checker, desugar,
and rename phases including position information tracking in Fun. However doing in this in full is
surprisingly involved and would add a significant amount of code to the reference implementation. As
such we will not be as thorough as GHC in handling every failure mode by virtue of the scope of our
project being a toy language with the primary goal being conciseness and simplicity.
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Frontend

The Frontend language for ProtoHaskell a fairly large language, consisting of many different types. Let’s
walk through the different constructions.

At the top is the named Module and all toplevel declarations contained therein. The first revision of the
compiler has a very simple module structure, which we will extend later in fun with imports and public
interfaces.

data Module = Module Name [Decl] -— N module T where { .. }
deriving (Eq,Show)

Declarations or Decl objects are any construct that can appear at toplevel of a module. These are namely
function, datatype, typeclass, and operator definitions.

data Decl
= FunDecl BindGroup -— M fx=x+1
| TypeDecl Type --— A f :: Int -> Int
| DataDecl Constr [Name] [ConDecl] -— N data T where { ... }
| ClassDecl [Pred] Name [Name] [Decl] -- * class (P) => T where { ... }
| InstDecl [Pred] Name Type [Decl] -— A dnstance (P) => T where { ... }
| FixityDecl FixitySpec -- M Hdnfixl 1 {..}
deriving (Eq, Show)

A binding group is a single line of definition for a function declaration. For instance the following
function has two binding groups.

-—- Group #1
factorial :: Int -> Int
factorial 0 = 1

-—- Group #2
factorial n = n x factorial (n - 1)

One of the primary roles of the desugarer is to merge these disjoint binding groups into a single splitting
tree of case statements under a single binding group.

data BindGroup = BindGroup

{ _matchName :: Name

, _matchPats :: [Match]

, _matchType :: Maybe Type
, _matchWhere :: [[Decl]]

} deriving (Eq, Show)
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The expression or Expr type is the core AST type that we will deal with and transform most frequently.
This is effectively a simple untyped lambda calculus with let statements, pattern matching, literals, type
annotations, if/these/else statements and do-notation.

type Constr = Name

data Expr
= EApp Expr Expr
| EVar Name
| ELam Name Expr
| ELit Literal
| ELet Name Expr Expr
| EIf  Expr Expr Expr
| ECase Expr [Match]
| EAnn  Expr Type
| EDo [Stmt]
| EFail

deriving (Eq, Show)

ab

X

\Wx .y

1, ’a’

let x =y in x

if x then tr else fl

case x of { p > e; ... }
( x : Int)
do { ... }

pattern match fail

Inside of case statements will be a distinct pattern matching syntax, this is used both at the toplevel
function declarations and inside of case statements.

data Match = Match
{ _matchPat [Pattern]
, _matchBody :: Expr
, _matchGuard :: [Guard]
} derdiving (Eq, Show)

data Pattern
= PVar Name
| PCon Constr [Pattern]
| PLit Literal
| Pwild
deriving (Eq, Show)

(@)

Xy

The do-notation syntax is written in terms of two constructions, one for monadic binds and the other

for monadic statements.

data Stmt

Generator Pattern Expr -- " pat <- exp

| Qualifier Expr
deriving (Eq, Show)

-- N exp

Literals are the atomic wired-in types that the compiler has knowledge of and will desugar into the

appropriate builtin datatypes.
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data Literal

= LitInt Int -— N1

| LitChar Char -— N A

| LitString [Word8] -— A Yfoo”#
deriving (Eq, Ord, Show)

For data declarations we have two categories of constructor declarations that can appear in the body,
Regular constructors and record declarations. We will adopt the Haskell -XGADTSyntax for all data
declarations.

-- Regular Syntax
data Person = Person String Int

-—- GADTSyntax
data Person where
Person :: String -> Int -> Person

-- Record Syntax
data Person where
Person :: Person { name :: String, age :: Int }

data ConDecl

= ConDecl Constr Type -—— AT ::a->Ta

| RecDecl Constr [(Name, Type)] Type —- ~ T :: { label :: a } -> T a
deriving (Eq, Show, Ord)

Fixity declarations are simply a binding between the operator symbol and the fixity information.

data FixitySpec = FixitySpec
{ fixityFix :: Fixity
, fixityName :: String
} deriving (Eq, Show)

data Assoc = L | R | N
deriving (Eq,Ord,Show)

data Fixity
= Infix Assoc Int
| Prefix Int
| Postfix Int
deriving (Eq,Ord,Show)

Data Declarations

Data declarations are named block of various ConDec/ constructors for each of the fields or constructors

of a user-defined datatype.
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data gname [var] where
[tydecl]

data Unit where
Unit :: Unit

DataDecl
(Name ”Unit”)
[l
[ ConDecl
(Name ”Unit”) (Forall [] [] (TCon AlgTyCon { tyId = Name ”Unit” 1}))

Function Declarations

Function declarations create FunDecl with BindGroup for the pattern on the left hand side of the toplevel
declaration. The matchPat is simply the sequence of patterns (PVar, PCon, PLit) on the left hand side.
If a type annotation is specified it is stored in the matchType field. Likewise, if there is a sequence of
where statements these are also attached directly to the declaration, and will later be desugared away into
local let statements across the body of the function.

gname [pat] = rhs [where decls]
const x y = X

FunDecl
BindGroup
{ _matchName = Name ”const”
, _matchPats =
[ Match

{ _matchPat = [ Pvar (Name ”x”) , PVar (Name ”y”) ]
, _matchBody = EVar (Name ”x”)
}

1
, _matchType = Nothing

, _matchWhere = [ [] ]

Pattern matches across multiple lines are treated as two separate declarations, which will later be grouped
on the matchName in the desugaring phase. So for instance the map function has the following repre-
sentation:

map f [] = []
map f (x:xs) = Cons (f x) (map f xs)
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FunDecl
BindGroup
{ _matchName = Name ”map”
, _matchPats
[ Match
{ _matchPat = [ PVar (Name ”f”) , PCon (Name ”Nil”) [] ]
, _matchBody = EVar (Name ”Nil”)
}

]
, _matchType = Nothing

, _matchWhere = [ [] ]

FunDecl
BindGroup
{ _matchName = Name ”map”
, _matchPats =
[ Match
{ _matchPat =
[ Pvar (Name ”f”)
, PCon (Name ”Cons”) [ PVar (Name ”x”) , PVar (Name ”xs”) ]
]
, _matchBody =
EApp
(EApp
(EVar (Name ”Cons”)) (EApp (EVar (Name ”f”)) (EVar (Name ”x”))))
(EApp
(EApp (EVar (Name ”map”)) (EVar (Name ”f”))) (EVar (Name ”xs”)))
}
]

, _matchType = Nothing
, _matchWhere = [ [] ]

Fixity Declarations

Fixity declarations are exceedingly simple, the store either arity of the declaration along with its associa-
tivity (Left, Right, Non-Associative) and the infix symbol.

[infix1l|infixr|infix] [integer] ops;
infixl 4 +;

FixityDecl
FixitySpec { fixityFix = Infix L 4 , fixityName = 7+” }
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Typeclass Declarations

Typeclass declarations consist simply of the list of typeclass constraints, the name of the class, and the
type variable ( single parameter only ). The body of the class is simply a sequence of scoped FunDecl
declarations with only the matchType field.

class [context] => classname [var] where
[body]

Consider a very simplified Num class.

class Num a where
plus :: a -> a -> a

ClassDecl
L]
(Name ”Num”)
[ Name ”a” ]
[ FunDecl
BindGroup
{ _matchName = Name ”plus”
, _matchPats [1
, _matchType
Just
(Forall
(]
[]
(TArr
(Tvar TV { tvName = Name ”a” })
(TArr
(Tvar TV { tvName = Name ”a” })
(Tvar TV { tvName = Name ”a” }))))
, _matchWhere = []

Typeclass instances follow the same pattern, they are simply the collection of instance constraints, the
name of name of the typeclass, and the head of the type class instance type. The declarations are a
sequence of FunDecl objects with the bodies of the functions for each of the overloaded function im-
plementations.

instance [context] => head where
[body]

For example:
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instance Num Int where
plus = plusInt#

InstDecl
[]
(Name ”Num”)
(TCon AlgTyCon { tyId = Name ”Int” })
[ FunDecl
BindGroup
{ _matchName = Name ”plus”
, _matchPats
[ Match { _matchPat = [] , _matchBody = EVar (Name ”plusInt”) } ]
, _matchType = Nothing
, _matchWhere = [ [] ]

Wired-in Types

While the base Haskell is quite small, several portions of the desugaring process require the compiler
to be aware about certain types before they otherwise defined in the Prelude. For instance the type of
every guarded pattern in the typechecker is Bool. These are desugared into a case statement that includes
the True and False constructors. The Bool type is therefore necessarily baked into the syntax of the
language and is inseparable from the implementation.

sign x
| x> o = 1
| x==0 = 0
| x< 0 =-1

These are called the wired-in types, and while they are still defined in our Prelude they will have somewhat
special status. The primitive types (of kind #) will be very special and are not user extensible, they map
directly to implementation details of the code generation backend or Haskell functions hard-wired into
the interpreter.

Syntax ~ Name Kind Description
Int# Int# # Machine integer
Char# Char# # Machine char
Double# Double# # Machine double
Addr# Addr# # Heap address
Int Int * Boxed integer
Char Char * Boxed char
Double  Double Boxed double
[1 List * => *x List
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Syntax ~ Name Kind Description

(,) Pair * => x => x  2-Tuple

O Unit * Unit type
(->) Arrow * => % -> % Arrow type
Bool Bool * Boolean
10 10 x -> % IO Monad

Traversals

Bottom-up traversals and rewrites in a monadic context are so that common that we'd like to automate
this process so that we don’t have duplicate the same logic across all our code. So we'll write several
generic traversal functions.

descendM :: (Monad m, Applicative m) => (Expr -> m Expr) -> Expr -> m Expr
descendM f e = case e of

EApp a b -> EApp <$> descendM f a <*> descendM f b
EVar a -> EVar <$> pure a
ELam a b -> ELam <$> pure a <x> descendM f b
ELit n -> ELit <$> pure n
ELet n a b -> ELet <$> pure n <x> descendM f a <x> descendM f b
EIf a b c -> EIf <$> descendM f a <x> descendM f b <x> descendM f c
ECase a xs -> ECase <$> f a <x> traverse (descendCaseM f) xs
EANn a t -> EAnn <$> descendM f a <x> pure t
EFail -> pure EFail
descendCaseM :: (Monad m, Applicative m) => (Expr -> m Expr) -> Match -> m Match

descendCaseM f e = case e of
Match ps a -> Match <$> pure ps <x> descendM f a

The case where the monad is Identity simply corresponds to a pure expression rewrite.

descend :: (Expr -> Expr) -> Expr -> Expr
descend f ex = runIdentity (descendM (return . f) ex)

For example a transformation for use in this framework of traversals might just use pattern matching
to match specific syntactic structure and rewrite it or simply yield the input and traverse to the next
element in the bottom-up traversal.

A pure trnasformation that rewrites all variables named “a” to “b” might be written concisely as the
following higher order function.

transform :: Expr -> Expr
transform = descend f
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where
f (Syn.EVar ”a”) = (Syn.EVar ”b”)
f x=x

This is good for pure logic, but most often our transformations will have to have access to some sort of
state or context during traversal and thus the descedM will let us write the same rewrite but in a custom
monadic context.

transform :: Expr -> RewriteM Expr
transform = descendM f
where

f (Syn.EVar x) = do

env <- gets _env

return $ Syn.EVar (lookupVar env x)
f x =x

These traversals admit very nice composition semantics, and AST transformations can be composed and
chained as easily as functions.

compose
(Expr —-> Expr)
-> (Expr -> Expr)
-> (Expr -> Expr)
compose f g = descend (f . g)

Recall from that monadic actions can be composed like functions using Kleisli composition operator.

Functions ta-—>b
Monadic operations : a -> m b

-— Function composition
(.) :: (b->c¢c) -=> (a->b) ->a->c
f.g=\x-—>g (fx)

-— Monad composition
(<=<) :: Monad m => (b ->m<c) -> (a ->mb) ->a->mc
f<=< gl \x > g x >>=f

We can now write composition descendM functions in terms of of Kleisli composition to give us a very
general notion of AST rewrite composition.

composeM
(Applicative m, Monad m)
=> (Expr -> m Expr)
-> (Expr -> m Expr)
-> (Expr -> m Expr)
composeM f g = descendM (f <=< g)
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So for instance if we have three AST monadic transformations (a, b, ¢) that we wish to compose into a
single pass t we can use composeM to to generate the composite transformation.

a :: Expr -> RewriteM Expr
b Expr -> RewriteM Expr
c Expr -> RewriteM Expr
t :: Expr -> RewriteM Expr
t = a ‘composeM‘ b ‘composeM‘ c

Later we utilize both GHC.Generics and Uniplate to generalize this technique even more.

Full Source

The partial source for the Frontend of ProtoHaskell is given. This is a stub of the all the data structure
and scaffolding we will use to construct the compiler pipeline.

¢ ProtoHaskell Frontend

The modules given are:

* Monad.hs - Compiler monad
* Flags.hs - Compiler flags
* Frontend.hs - Frontend syntax

* Name.hs - Syntax names

* Compiler.hs - Initial compiler stub
* Pretty.hs - Pretty printer
* Type.hs - Type syntax

Resources

See:

* 'The Architecture of Open Source Applications: GHC
* GHC Commentary
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—xtended Parser

Extended Parser

Up until now we've been using parser combinators to build our parsers. Parser combinators are a top-
down parser formally in the LL(k) family of parsers. The parser proceeds top-down, with a sequence of
k characters used to dispatch on the leftmost production rule. Combined with backtracking (i.e. try
combinator) this is simultaneously both an extremely powerful and simple model to implement as we
saw before with our simple 100 line parser library.

However there are a family of grammars that include left-recursion that LL(k) can be inefficient and often
incapable of parsing. Left-recursive rules are the case where the left-most symbol of the rule recurses on
itself. For example:

e ::= eop atom

Now we demonstrated a way before that we could handle these cases using the parser combinator
chainll function, and while this is possible sometimes it can in many cases be ineflicient use of parser
stack and lead to ambiguous cases.

The other major family of parsers LR are not plagued with the same concerns over left recursion. On the
other hand LR parser are exceedingly more complicated to implement, relying on a rather sophisticated
method known as Tomita’s algorithm to do the heavy lifting. The tooling can around the construction of
the production rules in a form that can be handled by the algorithm is often handled a DSL that generates
the code for the parser. While the tooling is fairly robust, there is a level of indirection between us and
the code that can often be a bit of brittle to extend with custom logic.

The most common form of this toolchain is the Lex/Yacc lexer and parser generator which compile into
efficient C parsers for LR grammars. Haskell’s Happy and Alex are roughly the Haskell equivalent of
these tools.

Toolchain

Our parser logic will be spread across two different modules.

* Lexerx
* Parsery

The code in each of these modules is a hybrid of the specific Alex/Happy grammar syntax and arbitrary
Haskell logic that is spliced in. Code delineated by braces ({}) is regular Haskell, while code outside is
parser/lexer logic.
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-— **Begin Haskell Syntaxx*

{
{-# OPTIONS_GHC -w #-}

module Lexer (

Token(..),
scanTokens
) where

import Syntax

}
-— *x*xEnd Haskell Syntaxxx*

-— **%Begin Alex Syntaxxx
%wrapper ”basic”

$digit = 0-9
Salpha = [a-zA-Z]
$eol = [\n]

-— *x*xEnd Alex Syntaxx*x

The files will be used during the code generation of the two modules Lexer and Parser. The toolchain
is accessible in several ways, first via the command-line tools alex and happy will will generate the
resulting modules by passing the appropriate input file to the tool.

$ alex Lexer.x # Generates Lexer.hs
$ happy Parser.y # Generates Parser.hs

Or inside of the cabal file using the build-tools command.

Build-depends: base, array
build-tools: alex, happy
other-modules:

Parser,

Lexer

So the resulting structure of our interpreter will have the following set of files.

¢ Lexer.hs
¢ Parser.hs
¢ Eval.hs

¢ Main.hs
* Syntax.hs
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Alex

Our lexer module will export our Token definition and a function for converting an arbitrary String into
a token stream or a list of Tokens.

{

module Lexer (
Token(..),
scanTokens

) where

import Syntax

}
The tokens are simply an enumeration of the unique possible tokens in our grammar.

data Token
= TokenLet

| TokenTrue

| TokenFalse

| TokenIn

| TokenLambda

| TokenNum Int

| TokenSym String
| TokenArrow

| TokenEq

| TokenAdd

| TokenSub

| TokenMul

| TokenLParen

| TokenRParen

| TokenEOF
deriving (Eq,Show)

scanTokens :: String -> [Token]
scanTokens = alexScanTokens

The token definition is list of function definitions mapping atomic character and alphabetical sequences
to constructors for our Token datatype.

%wrapper ”basic”

$digit = 0-9
$alpha [a-zA-Z]
$eol [\n]
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tokens :-

-— Whitespace 1insensitive

Seol 5

Swhite+ ;

-— Comments

”#”.* ;

-- Syntax

let \s -> TokenlLet }

\s -> TokenTrue }

\s -> TokenFalse }

\s -> TokenIn }

\s -> TokenNum (read s) }
\s -> TokenArrow }

{
{
{
{
{
{
\= { \s -> TokenEq }
{
{
{
{
{
{
{

True
False
in
sdigit+

77_>”

\\ \s -> TokenLambda }
[\+] \s -> TokenAdd }
[\-1 \s -> TokenSub }
[\*] \s -> TokenMul }
\ ( \s -> TokenLParen }

\)
$alpha [$alpha sdigit \_ \’]*

\s -> TokenRParen }
\s -> TokenSym s }

Happy

We'll parse into a small untyped lambda calculus for our frontend language.

module Syntax where
type Name = String

data Expr
= Lam Name Expr
| App Expr Expr
| Var Name
| Lit Lit
| Op Binop Expr Expr
deriving (Eq,Show)

data Lit
= LInt Int
| LBool Bool
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deriving (Show, Eq, Ord)

data Binop = Add | Sub | Mul | Eql
deriving (Eq, Ord, Show)

The token constructors are each assigned to a name that will be used in our production rules.

-— Lexer structure
%tokentype { Token }

-— Token Names

%token
let { TokenLet }
true { TokenTrue }
false { TokenFalse }
in { TokenIn }
NUM { TokenNum $$ }
VAR { TokenSym $$ }
’\\’ { TokenLambda }
’->7  { TokenArrow }
’=7 { TokenEq }
7+ { TokenAdd }
’-7 { TokenSub }
P x? { TokenMul }
*( { TokenLParen }
)’ { TokenRParen }

The parser itself will live inside of a custom monad of our choosing. In this simple case we'll just add
error handling with the Except monad.

-- Parser monad
%monad { Except String } { (>>=) } { return }
%error { parseError }

And finally our production rules, the toplevel entry point for our parser will be the expr rule. Notice
how naturally we can right left recursive grammar for our infix operators.

-- Entry point
%name expr

-- Operators
%left '+7 ’-7’
%left 'x’

%%
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Expr : let VAR ’=’ Expr {in Expr { App (Lam $2 $6) $4 }

| >\\” VAR ’->’ Expr { Lam $2 $4 }
| Form { s$1 1}
Form : Form ’+’ Form { Op Add s$1 $3 }
| Form -’ Form { Op Sub s$1 $3 }
| Form %’ Form { Op Mul s$1 $3 %}
| Fact {s$11}
Fact : Fact Atom { App $1 s$2 }
| Atom { $1 1}
Atom : ’(’ Expr )’ { $2 1}
| NUM { Lit (LInt $1) }
| VAR { var $1 }
| true { Lit (LBool True) }
| false { Lit (LBool True) }

Syntax Errors

Parsec’s default error reporting leaves a bit to be desired, but does in fact contain most of the information
needed to deliver better messages packed inside the ParseError structure.

showSyntaxError :: L.Text -> ParseError -> String

showSyntaxError s err = L.unpack $ L.unlines [

” ”»
)

”? <> lineContents,
77 <> ((L.replicate col 7 7) <> 7A7),
(L.pack $ show err)

]

where
lineContents = (L.lines s) !! line
pos = errorPos err

line = sourceline pos - 1
col = fromIntegral $ sourceColumn pos - 1

Now when we enter an invalid expression the error reporting will point us directly to the adjacent lexeme
that caused the problem as is common in many languages.

B> \x -> x +

\x -> x +
A
?<interactive>” (line 1, column 11):
unexpected end of input
expecting ”(”, character, literal string, ”[”, integer, ”if” or +identifier
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Type Error Provenance

Before our type inference engine would generate somewhat typical type inference error messages. If two
terms couldn’t be unified it simply told us this and some information about the toplevel declaration
where it occurred. Leaving us with a bit of a riddle about this error came to be.

Cannot unify types:
Int
with
Bool
in the definition of ’foo’

Effective error reporting in the presence of type inference is a difficult task, effectively our typechecker
takes our frontend AST and transforms it into a large constraint problem but effectively destroys position
information information in the process. Even if the position information were tracked, the nature of
unification is that a cascade of several unifications can give rise to invalid solution and the immediate
two syntactic constructs that gave rise to a unification fail are not necessarily the two that map back
to human intuition about how the type error arose. Very little research has done on this topic and it
remains a open topic with very immediate and applicable results to programming,.

To do simple provenance tracking we will use a technique of track the “flow” of type information through
out typechecker and associate position information associated with the inferred types back to their po-
sition information in the source.

type Name = String

data Expr
= Var Loc Name
| App Loc Expr Expr
| Lam Loc Name Expr
| Lit Loc Int

data Loc = NoLoc | Located Int
deriving (Show, Eq, Ord)

So now inside of our parser we simply attach Parsec information on to each AST node. For example for
the variable term.

variable :: Parser Expr

variable = do
x <- ddentifier
1 <- sourcelLine <$> getPosition
return (Var (Located 1) x)

Our type system will also include information, although by default it will use the NoLoc type until

explicit information is provided during inference. The two functions getLoc and setLoc will be used
to update and query the position information from type terms.
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data Type
= TVar Loc TVar
| TCon Loc Name
| TArr Loc Type Type
deriving (Show, Eq, Ord)

newtype TVar = TV String
deriving (Show, Eq, Ord)

typeInt :: Type
typeInt = TCon NolLoc ”Int”

setlLoc :: Loc -> Type -> Type

setLoc 1 (Tvar _ a) = TVar 1 a
setLoc 1 (TCon _ a) = TCon 1 a
setloc 1 (TArr _ a b) = TArr L a b

getlLoc :: Type -> Loc
getlLoc (TVar 1 _) =1
getlLoc (TCon 1 _)
getLoc (TArr 1 _ _) =1

Our fresh variable supply now also takes a location field which is attached to resulting type variable.

fresh :: Loc -> Check Type
fresh 1 = do
s <- get
put s{count = count s + 1}
return $ TVvar 1 (TV (letters !! count s))

infer :: Expr -> Check Type
infer expr = case expr of
Var 1 n -> do
t <- lookupVar n
return $ setlLoc 1 t

App L a b -> do
ta <- dinfer a
tb <- dinfer b
tr <- fresh 1
unify ta (TArr 1 tb tr)
return tr

Lam 1 n a -> do

tv <- fresh 1
ty <- dinEnv (n, tv) (infer a)
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return (TArr 1 (setLoc 1 ty) tv)
Lit 1 _ -> return (setLoc 1 typelnt)

Now specifically at the call site of our unification solver, if we encounter a unification fail we simply
pluck the location information off the two type terms and plug it into the type error fields.

unifies tl t2 | tl == t2 = return emptyUnifer

unifies (TVar _ v) t = v ‘bind‘ t

unifies t (TVar _ v) = v ‘bind‘ t

unifies (TArr _ t1 t2) (TArr _ t3 t4) = unifyMany [tl, t2] [t3, t4]
unifies (TCon _ a) (TCon _ b) | a == b = return emptyUnifer

unifies tl1 t2 throwError $ UnificationFail tl1 (getLoc tl) t2 (getLoc t2)

bind :: TVar -> Type -> Solve Unifier

bind a t
| eqLoc t a return (emptySubst, [])
| occursCheck a t = throwError $ InfiniteType a (getLoc t) t
| otherwise = return $ (Subst $ Map.singleton a t, [])

So now we can explicitly trace the provenance of the specific constraints that gave rise to a given type
error all the way back to the source that generated them.

Cannot unify types:
Int
Introduced at line 27 column 5

f23

with
Int -> ¢
Introduced at line 5 column 9

let f xy = xvy

This is of course the simplest implementation of the this tracking method and could be further extended
by giving an weighted ordering to the constraints based on their likelihood of importance and proximity
and then choosing which location to report based on this information. This remains an open area of
work.

Indentation

Haskell’s syntax uses indentation blocks to delineated sections of code. This use of indentation sensitive
layout to convey the structure of logic is sometimes called the offside rule in parsing literature. At the
beginning of “laidout” block the first declaration or definition can start in any column, and the parser
marks that indentation level. Every subsequent top-level declaration must have the same indentation.
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-- Start of layout ( Column: 0 )
fib :: Int -> Int
fib x = truncate $ (1 / sqrt 5 ) *x ( phi » x - psi » x ) —— (Column: > 0)
-- Start of new layout ( Column: 2 )
where
-— Indented block ( Column: > 2 )
phi = (1 +sqrt5) / 2
psi = (1 -sqrt5) /2

The Parsec monad is itself parameterized over a type variable s which stands for the State layer baked
into the monad allowing us to embed custom parser state inside of our rules. To adopt our parser to
handle sensitive whitespace we will

-- Indentation sensitive Parsec monad.
type IParsec a = Parsec Text ParseState a

data ParseState = ParseState
{ indents :: Column
} derdiving (Show)

initParseState :: ParseState
initParseState = ParseState 0

Inside of the Parsec the internal position state (SourcePos) is stored during each traversal, and is accessible
inside of rule logic via getPosition function.

data SourcePos = SourcePos SourceName !Line !Column
getPosition :: Monad m => ParsecT s u m SourcePos

In terms of this function we can write down a set of logic that will allow us to query the current column
count and then either succeed or fail to match on a pattern based on the current indentation level. The
laidout combinator will capture the current indentation state and push it into the indents field in the
State monad.

laidout :: Parsec s ParseState a -> Parsec s ParseState a
laidout m = do

cur <- indents <$> getState

pos <- sourceColumn <$> getPosition

modifyState $ \st -> st { indents = pos }

res <- m

modifyState $ \st -> st { dindents = cur }

return res

And then have specific logic which guard the parser match based on comparing the current indentation
level to the stored indentation level.
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indentCmp
(Column -> Column -> Bool)
-> Parsec s ParseState ()
indentCmp cmp = do
col <- sourceColumn <$> getPosition
current <- indents <$> getState
guard (col ‘cmp® current)

We can then write two combinators in terms of this function which match on either positive and identical
indentation difference.

indented :: IParsec ()
indented = dindentCmp (>) <?> ”Block (indented)”

align :: IParsec ()
align = +dindentCmp (==) <?> ”Block (same indentation)”

On top of these we write our two combinators for handling block syntax, which match a sequence of
vertically aligned patterns as a list.

block, blockl :: Parser a -> Parser [a]
block p = laidout (many (align >> p))
blockl p = laidout (manyl (align >> p))

GHC uses an optional layout rule for several constructs, allowing us to equivalently manually delimit
indentation sensitive syntax with braces. The most common is for do-notation. So for example:

example = do { a <- m; b }
example = do

a<-m
b

To support this in Parsec style we adopt implement a maybeBraces function.

maybeBraces :: Parser a -> Parser [a]
maybeBraces p = braces (endBy p semi) <|> block p

maybeBracesl :: Parser a -> Parser [a]
maybeBracesl p = braces (endByl p semi) <|> block p
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Extensible Operators

Haskell famously allows the definition of custom infix operators, and extremely useful language feature
although this poses a bit of a challenge to parse! There are several ways to do this and both depend on
two properties of the operators.

e Precedence
* Associativity

1. The first is the way that GHC does is to parse all operators as left associative and of the same
precedence, and then before desugaring go back and “fix” the parse tree given all the information
we collected after finishing parsing.

2. The second method is a bit of a hack, and involves simply storing the collected operators inside
of the Parsec state monad and then simply calling buildExpressionParser on the current state
each time we want to parse and infix operator expression.

To do later method we set up the AST objects for our fixity definitions, which associate precedence and
associativity annotations with a custom symbol.

data FixitySpec = FixitySpec
{ fixityFix :: Fixity
, fixityName :: String
} derdiving (Eq, Show)

data Assoc

=Z X0

|
|
deriving (Eq,Ord,Show)

data Fixity
= Infix Assoc Int
| Prefix Int
| Postfix Int
deriving (Eq,Ord,Show)

Our parser state monad will hold a list of the at Ivie fixity specifications and whenever a definition is
uncounted we will append to this list.

data ParseState = ParseState
{ indents :: Column
, fixities :: [FixitySpec]
} derdiving (Show)

139



initParseState :: ParseState
initParseState = ParseState 0 defaultOps

addOperator :: FixitySpec -> Parsec s ParseState ()
addOperator fixdecl = do
modifyState $ \st -> st { fixities = fixdecl : (fixities st) }

The initial state will consist of the default arithmetic and list operators defined with the same specification
as the Haskell specification.

defaultOps :: [FixitySpec]
defaultOps = [

FixitySpec (Infix L 4) ”>”»
, FixitySpec (Infix L 4) ”<”
, FixitySpec (Infix L 4) »”/=”
, FixitySpec (Infix L 4) 7==”

, FixitySpec (Infix R 5) ”:”

, FixitySpec (Infix L 6) ”+”
, FixitySpec (Infix L 6) ”-”

, FixitySpec (Infix L 5) ”*”
, FixitySpec (Infix L 5) ”/”

Now In our parser we need to be able to transform the fixity specifications into Parsec operator defini-
tions. This is a pretty straightforward sort and group operation on the list.

fixityPrec :: FixitySpec -> Int
fixityPrec (FixitySpec (Infix _ n) _) = n
fixityPrec (FixitySpec _ _) = 0

toParser (FixitySpec ass tok) = case ass of
Infix L _ -> infixOp tok (op (Name tok)) Ex.AssoclLeft
Infix R _ -> infixOp tok (op (Name tok)) Ex.AssocRight
Infix N _ -> infixOp tok (op (Name tok)) Ex.AssocNone

mkTable ops
map (map toParser) $
groupBy ((==) ‘on¢ fixityPrec) $
reverse $ sortBy (compare ‘on‘ fixityPrec) $ ops

Now when parsing a infix operator declarations we simply do a state operation and add the operator
to the parser state so that all subsequent definitions. This differs from Haskell slightly in that operators
must be defined before their usage in a module.
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fixityspec :: Parser FixitySpec
fixityspec = do
fix <= fixity
prec <- precedence
op <- operator
semi
let spec = FixitySpec (fix prec) op
addOperator spec
return spec
where
fixity = Infix L <$ reserved ”infix1”
<|> Infix R <$ reserved ”infixr”
<|> Infix N <$ reserved ”infix”

precedence :: Parser Int
precedence = do
n <- natural
if n <= 10
then return (fromInteger n)
else empty
<?> ”Invalid operator precedence”

fixitydecl :: Parser Decl
fixitydecl = do
spec <- fixityspec
return $ FixityDecl spec
<?> ”operator fixity definition”

And now when we need to parser a infix expression term we simply pull our state out and build the
custom operator table, and feed this the build Expression Parser just as before.

term :: Parser Expr -> Parser Expr
term a = do
st <- getState
let customOps = mkTable (fixities st)
Ex.buildExpressionParser customOps a

Full Source

* Happy Parser

* Imperative Language (Happy)
* Layout Combinators

* Type Provenance Tracking
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Resources

The tooling and documentation for Alex and Happy is well-developed as it is used extensively inside of

GHC:

e Alex User Guide

* Happy User Guide

* A Tool for Generalized LR Parsing In Haskell
* Haskell Syntax Definition

Haskell itself uses Alex and Happy for it’s parser infastructure. The resulting parser is rather sophisicated.

e [exerx
* Parsery

One of the few papers ever written in Type Error reporting gives some techniques for presentation and
tracing provenance:

* Top Quality Type Error Messages

142


https://www.haskell.org/alex/doc
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https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-17500010
https://github.com/ghc/ghc/blob/master/compiler/parser/Lexer.x
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