|
| |
|
|
A003336
|
|
Numbers that are the sum of 2 nonzero 4th powers.
|
|
26
|
|
|
|
2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8192, 8962, 10001, 10016
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,1
|
|
|
COMMENTS
|
Numbers n such that n = x^4 + y^4 has a solution in positive integers x, y.
|
|
|
REFERENCES
|
A. Bremner and P. Morton, A new characterization of the integer 5906, Manuscripta Math. 44 (1983) 187-229; Math. Rev. 84i:10016.
|
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..1000
S. R. Finch, On a generalized Fermat-Wiles equation
Eric Weisstein's World of Mathematics, Biquadratic Number
|
|
|
MATHEMATICA
|
nn=12; Select[Union[Plus@@@(Tuples[Range[nn], {2}]^4)], # <= nn^4&] [From Harvey P. Dale, Dec 29 2010]
|
|
|
PROG
|
(PARI) list(lim)=my(v=List(2)); for(x=1, lim^.25, for(y=1, min((lim-x^4)^.25, x), listput(v, x^4+y^4))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Apr 24 2012
|
|
|
CROSSREFS
|
5906 is the first term in A060387 but not in this sequence. Cf. A020897.
Sequence in context: A162622 A078164 A060387 * A212740 A212742 A178145
Adjacent sequences: A003333 A003334 A003335 * A003337 A003338 A003339
|
|
|
KEYWORD
|
nonn
|
|
|
AUTHOR
|
N. J. A. Sloane
|
|
|
STATUS
|
approved
|
| |
|
|