

SimbaEngine SDK 9.5

Build an ADO.NET Provider in 5
Days

Last Revised: May 2015

Simba Technologies Inc.

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Copyright ©2015 Simba Technologies Inc. All Rights Reserved.

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this publication, or the
software it describes, may be reproduced, transmitted, transcribed, stored in a retrieval system,
decompiled, disassembled, reverse-engineered, or translated into any language in any form by
any means for any purpose without the express written permission of Simba Technologies Inc.

Trademarks

Simba, the Simba logo, SimbaEngine, SimbaEngine C/S, SimbaExpress and SimbaLib are
registered trademarks of Simba Technologies Inc. All other trademarks and/or servicemarks are
the property of their respective owners.

Contact Us

Simba Technologies Inc.
938 West 8th Avenue
Vancouver, BC, Canada
V5Z 1E5

www.simba.com

Telephone +1 (604) 633-0008 sales: extension 2, support: extension 3

Fax +1 (604) 633-0004

Information and product sales: solutions@simba.com

Technical support: support@simba.com

Follow us on Twitter: @simbatech

Printed in Canada

www.simba.com i

mailto:support@simba.com

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Table of Contents
SimbaEngine SDK 9.5 .. i

Build an ADO.NET Provider in 5 Days ... i

Simba Technologies Inc. .. i

Introduction ... 1
About the SimbaEngine SDK .. 1
About the DotNetUltraLight sample solutions .. 2
About the DotNetUltraLight provider ... 2

Day One .. 4
Install the SimbaEngine SDK .. 4
Build the DotNetUltraLight example provider .. 4
Install the provider's assembly into the Global Assembly Cache 4
Install the other required assemblies into the GAC ... 5
Configure the .NET Framework to locate the provider .. 6
Test the data source ... 7
Set up a new project to build your own ADO.NET provider ... 8
Build your new provider .. 8
Update the Global Assembly Cache ... 8
Update the machine.config file .. 9
Test your new data source.. 9

Day Two .. 10
View the list of TODO messages .. 10
Rename the Simba.ADO.Net sub-classes .. 11
Construct the IDriver instance ... 11
Set the properties ... 11
Create properties for the connection string keys ... 12
Check the connection settings .. 12
Establish a connection .. 12

Day Three ... 13
Create and return metadata sources .. 13

Day Four ... 14
Prepare a query .. 14
Execute a prepared query .. 14
Provide parameter information .. 15
Implement query execution ... 15
Retrieve the query results ... 15

Day Five .. 17
Set the vendor name .. 17
Set the branding ... 17

Appendix A: Data Retrieval ... 18

Third Party Trademarks ... 19

www.simba.com ii

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Introduction
This guide will show you how to create your own, custom ADO.NET provider, using C#, with the
SimbaEngine SDK. It will walk you through the steps to modify and customize the included
DotNetUltraLight sample provider. At the end of five days, you will have a read-only provider
that connects to your data store.

About the SimbaEngine SDK
The SimbaEngine SDK contains a complete implementation of the ADO.NET specification,
which provides a standard interface to which any ADO.NET enabled application can connect.
The libraries of the SimbaEngine SDK hide the complexity of error checking, session
management, data conversions and other low-level implementation details. They expose a
simple API, called the Data Store Interface API or DSI API, which defines the operations needed
to access a data store. This will be used by common reporting applications to access your data
store when SimbaEngine executes an SQL statement. The diagram below shows how your
custom-designed DSI implementation (DSII) connects directly to your data source.

Figure 1: High-level view of SimbaEngine

The components from SimbaEngine SDK take responsibility for meeting the data access
standards while your custom DSI implementation takes responsibility for accessing your data
store and translating it to the DSI API. Full documentation for the SimbaEngine SDK is available
on the Simba website at http://www.simba.com/odbc-sdk-documents.htm.

Your
Data Store

(any ADO.Net app)

Your DSI Implementation

SimbaEngine

ADO.Net

Reporting Services Analysis Services ...

www.simba.com 1

http://www.simba.com/odbc-sdk-documents.htm

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

About the DotNetUltraLight sample solutions
The DotNetUltraLight sample contains two solutions that each use different APIs:

• The "DotNetUltraLight_Provider" solution uses the Simba.ADO.NET API.
The DotNetUltraLight_Provider_VS2012.sln file implements a provider that is written
entirely in C#, providing an ADO.NET interface. It is a sample DSI implementation of an
ADO.NET provider, which accesses a sample in-memory data source. The Simba SQLEngine is
not used with the ADO.NET provider.
Note: This is the solution that is described in this document.

• The "DotNetUltraLight_Driver" solution uses Simba’s C++ to C# bridge (CLIDSI) API.
The DotNetUltraLight_Driver_VS2012.sln file implements a driver using a mixture of C#
and C++, providing an ODBC interface or SimbaServer executable for use with any of the
SimbaClient drivers.

About the DotNetUltraLight provider
The DotNetUltraLight sample provider helps you to prototype a DSI implementation for your own
data store so you can learn how the SimbaEngine SDK works. You can also use it as the
foundation for a commercial DSI implementation if you are careful to remove the shortcuts and
simplifications that it contains. This is a fast and effective way to get a data access solution to
your customers.

In the DotNetUltraLight sample provider, there is a pattern of class relationships, headed by
IResultSet and anchored by your MetadataSource classes (For example,
ULTablesMetadataSource) and Table classes (For example, ULPersonTable).

For data retrieval, your Reader class interacts directly with your data store to retrieve the data
and deliver it to the Table class on demand. The Reader class should take care of caching,
buffering, paging, and all the other techniques that speed data access. Implementing metadata
access is a bit more complicated. There are several Metadata Sources that you can implement,
but as a starting point, to make your provider work properly, you only need to implement the
following Metadata Sources:

• Catalog only

• Schema only

• Columns

• Tables

• Type Information

www.simba.com 2

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

A typical design pattern for a DSI implementation is shown in the following UML diagram:

Figure 2: Design pattern for a DSI implementation.

www.simba.com 3

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Day One
Today's task is to set up the development environment and project files for your provider. By the
end of the day, you will have compiled and tested your ADO.NET provider.

Install the SimbaEngine SDK
Note: If you have a previous version of the SimbaEngine SDK installed, you must uninstall it
before you install the new one.

1. If Visual Studio is running, close it.

2. Run the SimbaEngine SDK setup executable that corresponds to your version of Visual Studio
and follow the installer’s instructions.

Important: The SimbaEngine SDK environment variables are defined only for the user that ran
the installation. If you install the SDK as a regular user and then run Visual Studio as an
administrator, the SDK will not work properly.

Build the DotNetUltraLight example provider
Note: Visual Studio 2012 is used for the examples, but newer versions are also supported.

1. Launch Microsoft Visual Studio.

2. Click File > Open > Project/Solution.

3. Navigate to
[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\DotNetUltraLight\
Source and then open the DotNetUltraLight_Provider_VS2012.sln file.
The default [INSTALL_DIRECTORY] is C:\Simba Technologies.

4. Click Build > Configuration Manager and make sure that the active solution configuration is
set to “Debug” and then click Close.

5. Click Build > Build Solution or press F7 to build the provider.

Install the provider's assembly into the Global Assembly Cache
Each time you build the DLL, it must be installed into the Global Assembly Cache (GAC) before
it can be used. To run the Global Assembly Cache tool, use the Visual Studio Command
Prompt. You must run this command as an administrator.

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual Studio Tools.

2. Right-click Visual Studio Command Prompt and select "Run as administrator".

3. Change to the directory that contains the DLL file that you just built. For example, type a
command that is similar the following:

cd [INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\DotNetUltraLight\Bin\
win\debug

www.simba.com 4

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

4. Type the following command to install the assembly into the GAC:
gacutil.exe /i Simba.UltraLight.Provider.dll

You will see the message, "Assembly successfully added to the cache" if the operation was
successful.

Note: If that assembly was already installed in the GAC, you must uninstall it before you try
to install it again. To uninstall the assembly from the GAC before installing it again, run the
following command (as administrator): gacutil.exe /u Simba.UltraLight.Provider

Install the other required assemblies into the GAC
In addition to the DLL of your provider, Simba.ADO.Net.dll and Simba.DotNetDSI.dll must
be installed in the GAC. These files were installed in the GAC during SDK installation.

Simba.ADO.Net assembly

In order to check the GAC for the Simba.ADO.Net assembly, run the following command:

gacutil.exe /l Simba.ADO.Net

If the assembly is already installed in the GAC, then you will see the message "Number of items
= 1" and you can move on to checking the next DLL. However, if the assembly is not installed in
the GAC, then you will see the message "Number of items = 0" and you must install the
assembly manually. To do this, run the following command:

gacutil.exe /i

"[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\DataAccessComponents\Bin\win\relea

se\Simba.ADO.Net.dll"

Simba.DotNetDSI assembly

In order to check the GAC for the Simba.DotNetDSI assembly, run the following command:

gacutil.exe /l Simba.DotNetDSI

If the assembly is already installed in the GAC, then you will see the message "Number of items
= 1" and you can move on to checking the other DLL. However, if the assembly is not installed
in the GAC, then you will see the message "Number of items = 0" and you must install the
assembly manually. To do this, run the following command:

gacutil.exe /i

"[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\DataAccessComponents\Bin\win\relea

se\Simba.DotNetDSI.dll"

www.simba.com 5

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Simba.ADO.Net.DDEX assembly

The Data Designer Extensibility (DDEX) assembly is used to hook into Analysis Services and
Visual Studio. It maps from the Microsoft models to the provider models that are supplied by the
SDK.

In order to check the GAC for the Simba.ADO.Net.DDEX assembly, run the following command:

gacutil.exe /l Simba.ADO.Net.DDEX

If the assembly is already installed in the GAC, then you will see the message "Number of items
= 1" However, if the assembly is not installed in the GAC, then you will see the message
"Number of items = 0" and you must install the assembly manually. To install this assembly, type
the following command:

gacutil.exe /i
"[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\DataAccessComponents\Bin\win\release\
Simba.ADO.Net.DDEX.dll"

Configure the .NET Framework to locate the provider
1. Open a text editor as an administrator. For example, to open WordPad as an administrator,

click Start > All Programs > Accessories and then right-click WordPad and click Run as
administrator.

2. In the text editor, open the machine.config files for the version of the Microsoft .NET framework
that you are using.

For example, if you were using Microsoft Visual Studio 2010, you would modify these files:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config\machine.config
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config\machine.config

If you were using Microsoft Visual Studio 2012, you would modify these files:

C:\Windows\Microsoft.NET\Framework\v2.0.50727\Config\machine.config
C:\Windows\Microsoft.NET\Framework64\v2.0.50727\Config\machine.config

3. Locate the <system.data><DbProviderFactories> node.

4. Insert the following node within the <DbProviderFactories> node:
<add name="UltraLightDSII Data Provider"
invariant="Simba.UltraLight.Provider" description=".NET Framework Data
Provider for UltraLightDSII" type="Simba.UltraLight.ULDotNetFactory,
Simba.UltraLight.Provider, Version=9.5.0.1000, Culture=neutral,
PublicKeyToken=85df83a0046b8966"/>

Note: Do not delete the other "name" nodes that may already be present in the file.

5. At the command prompt, run the following command:
gacutil.exe /l Simba.UltraLight.Provider

www.simba.com 6

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

You will see a message similar to this:

The Global Assembly Cache contains the following assemblies:
 Simba.UltraLight.Provider, Version=9.5.0.1000, Culture=neutral,
PublicKeyToken=85df83a0046b8966, processorArchitecture=MSIL

This shows you the "invariant" name of the provider, which is "Simba.UltraLight.Provider",
the Version and the PublicKeyToken.

6. In both machine.config files, for the new node that you just added, adjust the Version and
PublicKeyToken to match the information from the gacutil message in the previous step.
The XML node will look something like this:

<system.data>
 <DbProviderFactories>
 ...
 <add name="UltraLightDSII Data Provider"
invariant="Simba.UltraLight.Provider" description=".NET Framework Data
Provider for UltraLightDSII"
 type="Simba.UltraLight.ULDotNetFactory,
Simba.UltraLight.Provider, Version=9.5.0.1000, Culture=neutral,
PublicKeyToken=85df83a0046b8966"/>
 ...
 </DbProviderFactories>
</system.data>

7. Save and close both files.

Test the data source
To test the provider, you can use the Simba ADO.NET Provider Test Program that is provided
with the DotNetUltraLight example.

1. Open a Windows command prompt.

2. Type the following command to launch the Simba ADO.NET Provider Test Program:
"[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\DotNetUltraLight\Bin\
win\debug\TestApp.exe" Simba.UltraLight.Provider UID=na; PWD=na

The UID and PWD command line options must be specified but, because the provider does not
require a user id and password, you can just type any value for them.

The test program connects to the Simba.UltraLight.Provider.

3. Enter the following test query:
SELECT * FROM person

The schema data and the results of the SQL query are displayed.

If there were no problems with the example provider you built, you are now ready to set up a
development project to build your own ADO.NET provider.

www.simba.com 7

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Set up a new project to build your own ADO.NET provider
Now that you have built the example provider, you are ready to set up a development project to
build your own ADO.NET provider.

Note: It is very important that you create your own project directory. You might be tempted to
just modify the sample project files but we strongly recommend against this, because when you
install a new release of the SDK, changes you make will be lost and there may be times, for
debugging purposes, that you will need to see if the same error occurs using the sample
provider. If you have modified the sample provider, this will not be possible.

1. In your Windows Explorer window, copy the
[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\DotNetUltraLight
directory and paste it to the same location. This will create a new directory called
"DotNetUltraLight - Copy". Rename the directory to something that is meaningful to you.
This will be the top-level directory for your new project and DSI implementation files. For the rest
of this tutorial, when you see <YourProjectName> in the instructions, replace this with the name
you choose for this directory which is also the name of your project.

2. Open the Source directory of your new copy and then right-click the
DotNetUltraLight_Provider_VS2012.sln file.

3. Select Open with > Microsoft Visual Studio Version Selector.
4. In the Microsoft Visual Studio menu, click View > Solution Explorer.
5. Using the Solution Explorer, rename the DotNetUltraLight_Provider_VS2012 solution to

<YourProjectName>_Provider_ VS2012.

6. Rename the C# project UltraLight_Provider_VS2012 to
<YourProjectName>_Provider_VS2012.

7. In the Microsoft Visual Studio menu, click Project and then click
<YourProjectName>_Provider_VS2012 Properties.

8. In the Assembly name text box, replace Simba.UltraLight.Provider with
<YourCompanyName>.<YourProjectName>.Provider.

9. Click File > Save All.

Build your new provider
Click Build > Build Solution or press F7 to build the provider.

Update the Global Assembly Cache
Each time you build the DLL, it must be installed to the Global Assembly Cache (GAC).

1. On the taskbar, click Start > All Programs > Microsoft Visual Studio > Visual Studio Tools.

2. Right-click Visual Studio Command Prompt and select "Run as administrator".

www.simba.com 8

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

3. Change to the directory that contains the DLL file that you just built. For example, type a
command that is similar the following:

cd
[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\<YourProjectName>\Bin\
win\debug

4. Type the following command to install the assembly into the GAC:
gacutil.exe /i <YourAssemblyName>.dll

You will see the message, "Assembly successfully added to the cache" if the operation was
successful.

Note: Each time you make changes to your provider in the upcoming days you will need to
uninstall and re-install your provider from the GAC. To uninstall your assembly from the GAC
before installing it again, run the following command (as administrator):

gacutil.exe /u <YourAssemblyName>

Update the machine.config file
• Add a new node to the machine.config file.

• You will also want to change the name, invariant name, description, as well as the assembly
name in the type field of the <add> node you are adding to machine.config.

• Take note of the invariant name you set as this is how you will tell the test app to use your
provider.

• Each time you make changes to your provider in the upcoming days you will need to uninstall
and re-install your provider from the GAC but will not need to change machine.config unless
instructed to.

For detailed instructions, refer to the earlier section, "Configure the .NET Framework to locate
the provider".

Test your new data source
To test your new provider, use the Simba ADO.NET Provider Test Program again.

1. Open a Windows command prompt.

2. Type the following command to launch the Simba ADO.NET Provider Test Program:
"[INSTALL_DIRECTORY]\SimbaEngineSDK\9.5\Examples\Source\DotNetUltraLight\Bin\
win\debug\TestApp.exe" <YourAssemblyInvariantName> UID=na; PWD=na

The UID and PWD command line options must be specified but, because the provider does not
require a user id and password, you can just type any value for them.

The test program connects to your provider.

www.simba.com 9

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

3. Enter the following test query:
SELECT * FROM person

The schema data and the results of the SQL query are displayed.

If there were no problems, you are now ready to customize your provider.

Day Two
Today's goal is to customize your provider, enable logging and establish a connection to your
data store. In the DotNetUltraLight provider, the areas of the code that you need to change are
marked with “TODO(ADO)” messages along with a short explanatory message.

Note: These “TODO(ADO)” messages are distinct from “TODO(ODBC)” messages that are for a
different solution. For the purposes of this guide, you can disregard the “TODO(ODBC)”
messages.

Most of the areas of the code that you need to modify are for productization. These are things
like naming the provider, setting the properties that configure the provider, and naming the log
files. The other areas of the code that you will modify are related to getting the data and
metadata from your data store into the SimbaEngine SDK. Because the DotNetUltraLight
provider already has the classes and code to do this against the example data store, all you
have to do is modify the existing code to make your provider work against your own data store.

View the list of TODO messages
1. Go to Microsoft Visual Studio.

2. Click Edit > Find and Replace > Find in Files.

3. In the Find and Replace window, in the Find what text box, type TODO(ADO).

4. Click Find All.
The results are displayed in the Find Results output window. The list of TODO messages is as
follows:

TODO(ADO) #1: Rename the Simba.ADO.Net sub-
classes.

(ULDotNetFactory.cs)

TODO(ADO) #2: Construct the IDriver instance. (ULDotNetConnection.cs)

TODO(ADO) #3: Set the driver properties. (ULDriver.cs)

TODO(ADO) #4: Create properties for the connection
string keys.

(ULDotNetConnection
StringBuilder.cs)

TODO(ADO) #5: Check connection settings. (ULConnection.cs)

TODO(ADO) #6: Establish a connection. (ULConnection.cs)

TODO(ADO) #7: Create and return your Metadata
Sources.

(ULDataEngine.cs)

TODO(ADO) #8: Prepare a query. (ULDataEngine.cs)

TODO(ADO) #9: Implement a QueryExecutor. (ULQueryExecutor.cs)

www.simba.com 10

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

TODO(ADO) #10: Provide parameter information. (ULQueryExecutor.cs)

TODO(ADO) #11: Implement Query Execution. (ULQueryExecutor.cs)

TODO(ADO) #12: Implement your DSISimpleResultSet. (ULPersonTable.cs)

TODO(ADO) #13: Set the vendor name, which will be
prepended to error messages.

(ULDriver.cs)

TODO(ADO) #14: Set the branding of the registry
key to read configuration from.

(ULDotNetConnection.cs)

Over the next four days, you will be visiting each “TODO” and modifying the source code.

Today's goal is to customize your provider including application and user-facing components
that identify your provider, enable logging, and establish a connection to your data store. To
accomplish this you will visit TODO items 1 to 6.

Rename the Simba.ADO.Net sub-classes
TODO(ADO) #1: Rename the Simba.ADO.Net sub-classes. (ULDotNetFactory.cs)

1. In Microsoft Visual Studio, open the file that contains the TODO #1 message.

2. Each of the classes in the DotNet folder of the solution explorer should be renamed for your
provider. These classes are:

• ULDotNetFactory
• ULDotNetCommand
• ULDotNetCommandBuilder
• ULDotNetConnection
• ULDotNetConnectionStringBuilder
• ULDotNetDataAdapter
• ULDotNetParameter

3. To rename them, use Visual Studio’s rename refactoring utility as follows. Select the class
name then from the right-click menu, select Refactor -> Rename (Ctrl + R, Ctrl + R). For each
class, choose a name replacing the prefix ULDotNet with your own prefix. You should also
rename their filenames to correspond to the class name.

4. Click Save.

Construct the IDriver instance
TODO(ADO) #2: Construct the IDriver instance. (ULDotNetConnection.cs)

The CreateDSIDriverInstance method is the main entry point for Simba.ADO.Net to initialize
your provider. This method is called once as soon as an application first tries to connect to your
provider. There is nothing to change here right now, although you may want to add processing
at this point for a commercial provider.

Set the properties
TODO(ADO) #3: Set the driver properties. (ULDriver.cs)

1. Double click the TODO message to jump to the relevant section of code.

www.simba.com 11

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

2. Change the DSI_DRIVER_DRIVER_NAME setting. Set this to the name of your provider.

Note: You may want to revisit this section when fully productizing your provider.

Create properties for the connection string keys
TODO(ADO) #4: Create properties for the connection

string keys.
(ULDotNetConnection

StringBuilder.cs)

The connection string builder class is used by some applications to prompt the user for
connection options before attempting to connect. Here you will rename or replace the existing
properties UserName, Password, and Language with your own properties that may be used for
connections. Take note of how each of the existing properties are implemented by storing and
retrieving the value from the base class map accessor: this[KeyString].

Check the connection settings
TODO(ADO) #5: Check connection settings. (ULConnection.cs)

Given a connection string from the ADO.NET application, the Simba.ADO.Net layer will parse
the connection string into key-value pairs before calling ULConnection’s
UpdateConnectionSettings() method to validate its contents. This method should validate
that the entries within the requestSettings are sufficient to create a connection. If not, you
can ask for additional information from the application by specifying the additional settings in the
return value.

Should any of the values received be invalid, you should throw an exception. Note however that
you should only be checking that the values be in the correct form or within certain allowable
ranges. Do not attempt to communicate with the data store yet to validate keys such as
username and password. For your convenience, you can also use the utility functions supplied:
VerifyRequiredSetting() and VerifyOptionalSetting(). If there are no further entries
required, simply leave the returned dictionary empty.

Establish a connection
TODO(ADO) #6: Establish a connection. (ULConnection.cs)

Once ULConnection’s UpdateConnectionSettings() returns a dictionary without any required
settings (if there are only optional settings, a connection can still occur), the Simba.ADO.Net
layer will call ULConnection’s Connect() passing in all the connection settings received from
the application. This is where you should authenticate the user against your data store using the
information provided within the connectionSettings parameter.

Should authentication fail, you should throw an exception. You can also use the utility functions
supplied: GetRequiredSetting() and GetOptionalSetting().

You have now authenticated the user against your data store.

www.simba.com 12

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Day Three
Today’s goal is to return the data used to return schema information to the ADO.NET
application. The majority of all ADO.NET applications require the following schema names:

• DataTypes

• Tables

• Columns

Create and return metadata sources

TODO(ADO) #7: Create and return your Metadata
Sources.

(ULDataEngine.cs)

ULDataEngine’s MakeNewMetadataSource() is responsible for creating the sources to be used
to return data to the ADO.NET application for the various schemas. Schemas are mapped to a
unique MetadataSourceId, which is then mapped to an underlying IMetadataSource that you
will implement and return. Each IMetadataSource instance is responsible for the following:

• Creating a data structure that holds the data relevant for your data store: Constructor

• Navigating the structure on a row-by-row basis: MoveToNextRow()

• Retrieving data: GetMetadata() (See the section, Data Retrieval, for a brief overview of data
retrieval).

Handle MetadataSourceID.TypeInfo

The DataTypes schema is handled as follows:

1. When called with TypeInfo, ULDataEngine’s MakeNewMetadataSource() will return an instance
of ULTypeInfoMetadataSource.

2. The example provider exposes support for all data types although its one table only contains
the following types:

• SQL_WVARCHAR

• SQL_INTEGER

• SQL_NUMERIC

3. For your provider, you may need to change the types returned and the parameters for the types
in ULTypeInfoMetadataSource’s InitializeDataTypes().

www.simba.com 13

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Handle the other MetadataSources

The other schemas are handled in a similar fashion to Type Information Metadata.

1. When called with any other MetadataSourceID, MakeNewMetadataSchema() will return
the appropriate instance of an implementation of IMetadataSource as illustrated by the
DotNetUltraLight provider.

2. Your implementations of IMetadataSource should query your data store to obtain the
appropriate metadata and provide the means to iterate through that metadata and to return
the metadata.

You can now retrieve type metadata from within your data store. You should be able to connect
to your provider with the ADO.NET sample application and see the correct metadata returned.
Using the sample application, when prompted for a query, instead enter one of the following
schema names: “DataTypes”, “Tables”, or “Columns”.

Day Four
Today’s goal is to enable data retrieval from within the provider. We will cover the process of
opening a table defined within your data store, retrieving the column information for the table,
and finally retrieving data.

We will cover the process of preparing a query, executing the prepared query, retrieving the
query result, retrieving the column information for the query result, and finally retrieving data.

Prepare a query
TODO(ADO) #8: Prepare a query. (ULDataEngine.cs)

ULDataEngine’s Prepare() is the entry point where the SimbaEngine SDK requests queries to
be prepared. You must modify this method to perform the following:

• Send a request to your data store to prepare the query.

• Handle the response from your data store.

• Create an instance of your IQueryExecutor implementation containing whatever
information is necessary to execute the query.

If the query can be prepared, a new instance of your IQueryExecutor will be returned.

Execute a prepared query
After a query has been prepared, a query is executed.

TODO(ADO) #9: Implement a QueryExecutor. (ULQueryExecutor.cs)

You will need to modify the constructor of ULQueryExecutor to receive information from query
preparation to be used for query execution. In the constructor, you must also update the

www.simba.com 14

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Results property to be a list of IResult of the correct IResultSet or IRowCountResult types.
These results should not contain actual data yet but may be used to retrieve column metadata
before the query is executed.

Provide parameter information
TODO(ADO) #10: Provide parameter information. (ULQueryExecutor.cs)

If your data store is capable of handling query parameters, you will need to fill the
ParameterMetadata list with relevant parameter metadata for the query. If the query contains
no parameters, an empty list should be created.

Implement query execution
TODO(ADO) #11: Implement Query Execution. (ULQueryExecutor.cs)

ULQueryExecutor’s Execute() is the entry point where the SimbaEngine SDK requests
queries to be executed. You must modify this method to perform the following:

• Serialize all input parameters (if any) in a form that can be consumed by the data store.

• Send a request to your data store to execute the query.

• Retrieve all output parameters (if any) from the data store.

• Prepare to retrieve query results from the data store.

Retrieve the query results
After a query has been executed, the query results are returned in an implementation of the
IResultSet interface. The DSISimpleResultSet class provides a partial implementation of
the interface to simplify the task of implementing a basic forward-only, read-only result set.

TODO(ADO) #12: Implement your DSISimpleResultSet. (ULPersonTable.cs)

ULPersonTable implements a simple in-memory table. In general, your “table” class can
represent the results of a query that may involve more than a single table but for simplicity, this
tutorial assumes a query involving a single table.

The next sections describe the changes you must make to ULPersonTable for it to work with
your data store.

• Return the columns defined for your table.

o InitializeColumns(): This method must be modified so that, for each column defined
in the query, you define the ColumnMetadata in terms of SQL types.

Here is an example of pseudo code for the new method:

Get all the column information from your data store for the table
For Each Defined Column
{

www.simba.com 15

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

 // Set the argument of the following method call to the SQL Type that
 // maps to the data store type of the column.
 TypeMetadata typeMetadata =
 TypeMetadata.CreateTypeMetadata(SqlType.VarChar);

 // Depending on SQL type, set different properties:
 if (character type)
 {
 typeMetadata.IntervalPrecision = m_settings.m_maxColumnSize;
 }
 else if (exact numeric type)
 {
 typeMetadata.Scale = scale;
 }

 // Create the column metadata.
 DSIColumn columnMetadata = new DSIColumn(typeMetadata);
 columnMetadata.Catalog = m_catalogName;
 columnMetadata.Schema = m_schemaName;
 columnMetadata.TableName = m_tableName;
 columnMetadata.Name = “column name”;
 columnMetadata.Label = “localized column name”;
 columnMetadata.IsNullable = Nullability.Nullable;

 if (character type)
 {
 columnMetadata.Size = m_settings.m_maxColumnSize;
 }

 // Add the column metadata to the list of column metadata.
 m_columns.add(columnMetadata);
}

• Data Retrieval
o MoveToNextRow()

o GetData()

These methods are responsible for navigating a data structure containing information about
one table in your data store, and retrieving data from that table.

It is best to implement a class that provides a streaming interface for the data in the table
within your data store. It should also provide the ability to navigate forward from one table
row to the next. The class should be able to navigate across columns within the row and to
read the data associated with the current row and column combination.

In the DotNetUltraLight Provider, ULPersonTable stores its data in an in-memory list of a
class specific to describing rows of this table. Each member variable in the RowData object
represents a column of data. The GetData method takes a column index and uses it to
determine from which member variable of the current row/object to retrieve data. See Data
Retrieval, for a brief overview of data retrieval.

o DoCloseCursor()

www.simba.com 16

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

This is a callback method called by the SimbaEngine SDK to indicate that data retrieval has
completed and that you may now perform any tasks related to closing any associated result
set in your data store.

You can now execute queries and retrieve data from your data store. You should be able to use
the sample ADO.NET application to execute queries and to see the results returned from your
data store.

Day Five
Today’s goal is to start productizing your provider.

Set the vendor name
TODO(ADO) #13: Set the vendor name, which will be

prepended to error messages.
(ULDriver.cs)

Most error messages generated within the Simba.ADO.Net and Simba.DotNetDSI components
will have a vendor name or brand prepended to help identify the source of the error. Here you
should uncomment the VendorName property and change the string it returns to be one to
identify your brand or provider.

Set the branding
TODO(ADO) #14: Set the branding of the registry

key to read configuration from.
(ULDotNetConnection.cs)

Change the string here to return the key name indicating where to read configuration values
from in the registry. The default value of @“Simba\DotNetUltraLight” causes the config values to
be read from “Software\Simba\DotNetUltraLight\Driver”. (Note that 32-bit applications on 64-bit
platforms will read from “Software\Wow6432Node\Simba\DotNetUltraLight\Driver”.)

Finally, rename any remaining namespaces, files, and classes that contain the name
“UltraLight” or abbreviation “UL”.

You are now done with all of the TODO’s in the project. You have created your own, custom
ADO.NET provider using the SimbaEngine SDK by modifying and customizing the
DotNetUltraLight sample provider.

www.simba.com 17

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Appendix A: Data Retrieval
In the Data Store Interface (DSI), the following two methods actually perform the task of
retrieving data from your data store:

1. Each IMetadataSource implementation of GetMetadata()

2. ULPersonTable’s GetData()

Both methods will provide a way to uniquely identify a column within the current row. For
IMetadataSource, the Simba SQL Engine will pass in a unique column tag (see
MetadataSourceColumnTag). For ULPersonTable, the SimbaEngine SDK will pass in the
column index starting at 0.

In addition, both methods accept the following three parameters:

1. out_data

The Object into which you must set your cell’s value. The data you set must be
represented as the Object or primitive data type that corresponds to the data type you set in
the column metadata. For example, if a column is a SqlType.Integer, you must use a
System.Int32. For a full list of the types used, see the documentation for
Simba.DotNetDSI.DataEngine.SqlType. If your data is not stored as the appropriate
type, you will need to write code to convert from your native format.

2. offset

Some data types can be retrieved in parts. This value specifies where in the current column
the value should be copied from. The value is usually 0.

3. maxSize

The maximum size (in bytes) that can be copied into the type. For character or binary data,
copying data over this amount can result in a data truncation warning, or worse, a heap-
violation.

www.simba.com 18

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Third Party Trademarks
ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young(eay@cryptsoft.com). This product includes software written by
Tim Hudson (tjh@cryptsoft.com).

www.simba.com 19

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to
conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL
documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a
product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual
message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

 "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

 The word 'cryptographic' can be left out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an
acknowledgement:

 "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code
cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

Expat License

"Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the ""Software""), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ""AS IS"", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

Stringencoders License

Copyright 2005, 2006, 2007

www.simba.com 20

SimbaEngine SDK 9.5 Build an ADO.NET Provider in 5 Days

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR,
NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

www.simba.com 21

	Introduction
	About the SimbaEngine SDK
	About the DotNetUltraLight sample solutions
	About the DotNetUltraLight provider

	Day One
	Install the SimbaEngine SDK
	Build the DotNetUltraLight example provider
	Install the provider's assembly into the Global Assembly Cache
	Configure the .NET Framework to locate the provider
	Test the data source
	Set up a new project to build your own ADO.NET provider
	Build your new provider
	Update the Global Assembly Cache
	Update the machine.config file
	Test your new data source

	Day Two
	View the list of TODO messages
	Rename the Simba.ADO.Net sub-classes
	Construct the IDriver instance
	Set the properties
	Create properties for the connection string keys
	Check the connection settings
	Establish a connection

	Day Three
	Create and return metadata sources

	Day Four
	Prepare a query
	Execute a prepared query
	Provide parameter information
	Implement query execution
	Retrieve the query results

	Day Five
	Set the vendor name
	Set the branding

	Appendix A: Data Retrieval
	Third Party Trademarks

