use the following search parameters to narrow your results:
e.g. subreddit:aww site:imgur.com dog
subreddit:aww site:imgur.com dog
詳しくは検索FAQを参照
高度な検索: 投稿者や、subredditで……
126 人のユーザーが現在閲覧しています
This subreddit is for discussion of mathematical links and questions. Please read the FAQ before posting.
Homework problems, practice problems, and similar questions should be directed to /r/learnmath, /r/homeworkhelp or /r/cheatatmathhomework, and will be removed.
Image-only posts should be on-topic and should promote discussion; please do not post memes or similar content here. Please be polite and civil when commenting, and always follow reddiquette.
Filters: Hide Image Posts Show All Posts
Recurring Threads and Resources
What Are You Working On? - posted Mondays
Everything About X - Posted Wednesdays (on hold)
Simple Questions - Posted Fridays
/r/math's Book Club - Posted Fridays (on hold)
A Compilation of Free, Online Math Resources.
Using LaTeX
To view LaTeX on reddit, install one of the following:
MathJax userscript (requires one of Greasemonkey, Tampermonkey, etc.)
TeXtheWorld Chrome extension
TeXtheWorld userscript
[; e^{\pi i} + 1 = 0 ;]
Post the equation above like this:
`[; e^{\pi i}+1=0 ;]`
You may need to add four spaces before or put backticks around math fragments.
Using Superscripts and Subscripts
x*_sub_* makes xsub
x*`sup`* and x^(sup) both make xsup
x*_sub_`sup`* makes xsubsup
sup
x*`sup`_sub_* makes xsupsub
Other Subreddits
Math
Tools
Related fields
Integral of X^X (self.math)
abushk が 1年前 投稿
So I'm currently in calc 3, and I asked my teacher about the indefinite integral of (xx ) dx. My teacher said that there is no closed form solution using elementary functions. I was curious, has that been proven? Is it even true, or am I just being told that because the solution is too advanced and/or not applicable to my class.
[–]RiemannZeta 55ポイント56ポイント57ポイント 1年前 (22子コメント)
Yes this is a known fact. See http://en.wikipedia.org/wiki/Liouville%27s_theorem_(differential_algebra)
[–]abushk[S] 10ポイント11ポイント12ポイント 1年前 (21子コメント)
Well then... I guess that settles it.
[+][削除されました] 1年前 (20子コメント)
[deleted]
[–]zifyoip 34ポイント35ポイント36ポイント 1年前 (4子コメント)
Think of it as the fact that xx is by nature constantly varying in every direction, hence at all points in the imaginary plane the function can be approached from different directions with different results and reach different derivatives and hence different antiderivatives.
I don't know what you mean here. The real-valued function xx, defined on the positive reals, does not have an elementary antiderivative, but that isn't because some complex limit doesn't exist. It has nothing to do with "approaching from different directions."
The function xx does not have "different derivatives." It has one derivative, which is xx(1 + ln x).
The function xx is guaranteed to have an antiderivative, by the fundamental theorem of calculus. In fact it has infinitely many antiderivatives, just as all other continuous functions do, and any two of these antiderivatives differ from each other by a constant, just as for any other continuous function. The function xx is no different from the function x2 in this regard.
The thing about xx is that its antiderivatives cannot be expressed using elementary functions. The antiderivatives of xx exist—we just can't write them down using exponentials, logarithms, trigonometric functions, constants, and roots of polynomial functions, combined through composition, addition, subtraction, multiplication, and division. That's all.
[–]caedin8 0ポイント1ポイント2ポイント 1年前 (3子コメント)
So if they exist and we can't represent them with standard methods are there symbols which refer to them? Such as using aleph0, aleph1, aleph2 to refer to different levels of infinity with respect to cardinality.
[–]zifyoip 10ポイント11ポイント12ポイント 1年前 (1子コメント)
By the fundamental theorem of calculus, the antiderivatives of the function xx are of the form
http://i.imgur.com/W07GAvx.png
where C is a constant.
[–][deleted] -2ポイント-1ポイント0ポイント 1年前 (0子コメント)
Haha, I was waiting for someone to post this parameter is at ion.
[–]gizmo686 0ポイント1ポイント2ポイント 1年前 (0子コメント)
I'm not aware of any special function, and a quick look through google suggests that it cannot be expressed with any (common) named function. Having said that, we can represent it with the standard method of infinite sums, or as an integral.
[–]RiemannZeta 9ポイント10ポイント11ポイント 1年前* (11子コメント)
This isn't right. By the fundamental theorem of calculus, xx has an antiderivative. I can actually write one out for you:
\int_0^x t^t dt
Pretty unsatisfying right? It's an antiderivative because it's derivative is xx. The point here is any antiderivative of xx cannot be expressed in terms of finite compositions of polynomials, log, exp (and hence trig).
[–]abushk[S] 0ポイント1ポイント2ポイント 1年前 (9子コメント)
I'm sorry but I'm not familiar with the notation you used. Care to explain? To be more specific I'm unfamiliar with the expression you gave that represents an anti derivative of xx
[–]RiemannZeta 4ポイント5ポイント6ポイント 1年前* (8子コメント)
integral of tt dt from 0 to x
This represents a differentiable function and if you look at the fundamental theorem of calculus, you'll see it has derivative xx.
This is only an abstract notion that shows existence of an antiderivative. This doesn't help us anywhere else, e.g. plotting the antiderivative, etc.
[–]abushk[S] 0ポイント1ポイント2ポイント 1年前 (0子コメント)
Oh, that makes sense.
[–]stua8992 0ポイント1ポイント2ポイント 1年前 (6子コメント)
Should the lower bound be negative infinity rather than 0? isn't the derivative of integral of tt dt from 0 to x = xx - 1
[–]RiemannZeta 6ポイント7ポイント8ポイント 1年前 (3子コメント)
You can choose any positive integer instead of zero if you wish. We're working in the real numbers, so the domain of xx is [0, inf). The infinite amount of antiderivatives comes from the fact that we can choose any positive starting value other than 0.
[–]jazzwhizMathematical Physics 1ポイント2ポイント3ポイント 1年前 (1子コメント)
There is the decent point that 00 seems to be not that well defined. Depending on which order you take the limit you can get zero or one. Some people select various conventions. That said, in the integral it doesn't matter because either option is finite and xx is definitely continuous for x>0.
[–]RiemannZeta 1ポイント2ポイント3ポイント 1年前 (0子コメント)
The choice of 0 is fine since the limit from the right exists.
[–]stua8992 0ポイント1ポイント2ポイント 1年前 (0子コメント)
yep gotcha. my prehistoric calculus learnings failed me for a minute haha
[–]zifyoip 0ポイント1ポイント2ポイント 1年前 (1子コメント)
No. See the fundamental theorem of calculus.
[–]stua8992 -1ポイント0ポイント1ポイント 1年前* (0子コメント)
00 = 1 though.... or have i forgotten the fundamental theorem of calculus
Edit: disregard
[–]trudunc -1ポイント0ポイント1ポイント 1年前 (0子コメント)
Yes, but the teacher said no closed form using elementary functions.
Edit: I don't believe in deleting posts, but I clearly didn't finish reading your post. Sorry.
[–]abushk[S] 2ポイント3ポイント4ポイント 1年前 (1子コメント)
Well, being in calc 3 I don't have all that much experience with complex planes, but I think I caught your drift.
[+]Manticorp スコアが基準値未満のコメント-14ポイント-13ポイント-12ポイント 1年前 (0子コメント)
not familiar with what calc 3 means, but basically imagine a 3D plane and a curve in that plane, at any point in that plane, every direction you can approach any point in that plane from will have a different gradient.
The 3D plane is the imaginary plane (the number plane, all numbers)
[–]iorgfeflkd 18ポイント19ポイント20ポイント 1年前 (0子コメント)
You can take a taylor series of ex log x and then integrate each term, which has a solution in terms of incomplete gamma functions. The integral is then a sum over an incomplete gamma function representing the integral of each taylor term.
More specifically, the integrals of xx and x-x from 0 to 1 are called the Sophomore's dream, because there's a neat pseudo-coincidence that integral from zero to one of x-x is equal to the sum from one to infinity of n-n
[–]drock_davis 18ポイント19ポイント20ポイント 1年前 (4子コメント)
There's tons of functions out there without purely analytical solutions/antiderivatives. Take ex2 for example. There are well known numerical solutions though.
[–]abushk[S] 6ポイント7ポイント8ポイント 1年前 (1子コメント)
I understand that there are, but I was just skeptical about this particular function. I don't know why. I guess I figured if I consulted you guys my curiosity would be satisfied.
[–]Unrouted 8ポイント9ポイント10ポイント 1年前* (0子コメント)
Here's a fun exercise.
Read about the Cauchy Product.
Try it with the Taylor Expansion of ex.
EDIT: You can also compare this with the Taylor expansion of the integrals of ex2 and xx.
[–]limes_limes_limes -1ポイント0ポイント1ポイント 1年前 (1子コメント)
What does it mean for a numerical solution to be "well known"?
[–]orangejake 1ポイント2ポイント3ポイント 1年前 (0子コメント)
Saying that there's no solution in elementary functions may make it seem like these functions aren't particularly well studied, that isn't the case. While there's no easy representation of them, they can easily be evaluated at a point (before computers, there would be tables of these functions evaluated at different points to use as a reference).
Additionally, good approximations generally exist, which allow for manipulation. So "well known" numerical solutions mean that, while there isn't a solution in terms of elementary functions, there still is a solution that is well defined, and fairly easy to implement.
[–]zifyoip 25ポイント26ポイント27ポイント 1年前 (2子コメント)
It is likely true. WolframAlpha does not report an elementary antiderivative:
http://www.wolframalpha.com/input/?i=antiderivative+of+x^x
Not all elementary functions have elementary antiderivatives. The Risch algorithm is a method to determine whether an elementary function has an elementary antiderivative and to find an elementary antiderivative if one exists. This algorithm could be applied to the function xx to answer this question. I don't know for sure if this is what WolframAlpha does.
[–]Chthonos 13ポイント14ポイント15ポイント 1年前 (1子コメント)
Last I checked, there's still no full implementation of the Risch algorithm anywhere. That was a couple of years ago, though, so it could have changed by now.
[–]zifyoip 9ポイント10ポイント11ポイント 1年前 (0子コメント)
That was my impression too, but the Wikipedia article that I linked to has an Implementation section that led me to believe it has now been fully implemented.
[–]Save_the_landmines 3ポイント4ポイント5ポイント 1年前* (2子コメント)
The only formula I've been able to find is a not-so-pretty infinite sum for the integral of tetrations (expressions of the form x^x^...^x). It's equation (10) at http://mathworld.wolfram.com/PowerTower.html. Note that Γ denotes the upper incomplete gamma function. For your case, xx, set m = 2.
Not in closed form, obviously.
[–]philly_fan_in_chi 0ポイント1ポイント2ポイント 1年前 (1子コメント)
Here's a paper on the limit of expressions of that form as x-->0 from a former professor of mine.
[–][deleted] 3ポイント4ポイント5ポイント 1年前 (0子コメント)
Lol what on earth is that thing at the bottom of page 3?
[–]Telegramsam75 2ポイント3ポイント4ポイント 1年前 (0子コメント)
It does not have an antiderivative that can by written in closed form. Investigate the Lambert W function for more insight. The buck stops there for current math knowledge.
[–]RottMaster 9ポイント10ポイント11ポイント 1年前 (3子コメント)
-1\12?
[–]AnticPosition 3ポイント4ポイント5ポイント 1年前 (0子コメント)
nono, that's the sum of all natural numbers... -_-;
[–]abushk[S] 3ポイント4ポイント5ポイント 1年前 (1子コメント)
Umm.... I think you commented on the wrong thread.
[–]RottMaster 5ポイント6ポイント7ポイント 1年前 (0子コメント)
Maybe
[–]clutchest_nugget 1ポイント2ポイント3ポイント 1年前 (1子コメント)
I would really like to see a proof of this fact, if anyone is so inclined.
[–]zifyoip 4ポイント5ポイント6ポイント 1年前 (0子コメント)
A proof would be an application of the Risch algorithm, with the result of the algorithm being that there is no elementary antiderivative.
[–][deleted] 1ポイント2ポイント3ポイント 1年前 (2子コメント)
If anyone else is curious about what the integral of xx looks like, here's a graph. I'll warn you though, it's not very interesting.
I made this with wxMaxima using the QUADPACK numerical integrator:
plot2d(quad_qag(z^z,z,0,x,6)[1], [x,0,2]);
[–]abushk[S] 4ポイント5ポイント6ポイント 1年前 (0子コメント)
I thought it was interesting.
[–]n3verloseApplied Math 5ポイント6ポイント7ポイント 1年前 (0子コメント)
It's much more interesting for negative x, and especially complex x.
[+]FinFihlman スコアが基準値未満のコメント-63ポイント-62ポイント-61ポイント 1年前 (14子コメント)
As the trigonometric functions are not elementary, per se, could we find an "elementary" solution to the integral of xx?
[–]zifyoip 28ポイント29ポイント30ポイント 1年前 (11子コメント)
Trigonometric functions are elementary functions.
[+]FinFihlman スコアが基準値未満のコメント-71ポイント-70ポイント-69ポイント 1年前 (10子コメント)
Sigh, you didn't really grasp the idea, now did you.
[–]zifyoip 23ポイント24ポイント25ポイント 1年前 (9子コメント)
No, apparently I didn't.
The usual definition of "elementary function" includes exponentials, logarithms, trigonometric functions, constants, and roots of polynomial equations.
Thus, when it is said that the function xx does not have an elementary antiderivative, that already includes anything that could be made using trigonometric functions.
[+]FinFihlman スコアが基準値未満のコメント-61ポイント-60ポイント-59ポイント 1年前 (8子コメント)
Yap, you didn't.
Well, no shit, Sherlock.
I never implied it would have to be constructed with trigonometric functions.
Trigonometric functions are elementary because that suits us. A lot of them, especially the ones that need words to write out, are because that makes our life simpler.
Define trigonometric functions with just the basic operands without infinite sums and stick to real space, I dare you. Isn't it convenient that you can't?
The original elementary functions are addition, subtraction, multiplication and division because they have real world concrete examples. From these we find that any other hyperoperation is easy to add into the mix.
But we still don't count the arrow notation as an elementary function from which follows that the definition of elementary operations is more arbitrary than you'd like.
Now, as we have established the fact that the group of hyper operations is arbitrary we can easily add into the mix other operators and define them as we wish.
What I'm asking is is if any of you know if there exists a definite integral of xx that features distinct patterns that could be defined with word functions (like but not included: sin, ln, et cetera) that don't fall into today's definition of elementary functions?
[–]zifyoip 38ポイント39ポイント40ポイント 1年前 (4子コメント)
No, apparently I didn't. Yap, you didn't. The usual definition of "elementary function" includes exponentials, logarithms, trigonometric functions, constants, and roots of polynomial equations. Well, no shit, Sherlock.
Look, don't get pissy with me when you give a nonstandard meaning to a standard term without explanation and then I don't understand what you mean.
If you want to consider a different family of functions, fine. But define what it is that you mean.
[–]christsassholeAlgebra 10ポイント11ポイント12ポイント 1年前 (0子コメント)
You shouldn't be too offended; I have him tagged as "methhead" for some reason.
[+]FinFihlman スコアが基準値未満のコメント-7ポイント-6ポイント-5ポイント 1年前 (2子コメント)
I mocked you, there's a difference.
I gave you an idea that I thought was understandable. Apparently it wasn't for which I'm sorry.
Now that we have gotten over with the negativity, would you answer my question as I already presented it above?
The set of elementary functions is quite arbitrary. We have there the most useful functions that we need often. The problem is that many functions, like all the hyperoperations, would fit in nicely but are not included, as explained above. We can also only approximate many of the functions there, most notably the inverses of the exponential functions.
If we were to integrate xx, do you know if there exists a pattern to it that we could name (and use elsewhere)?
[–][削除されました] 1年前 (1子コメント)
[–]anonemouse2010 1ポイント2ポイント3ポイント 1年前 (2子コメント)
I can easily define trig functions from the real world.
[+]FinFihlman スコアが基準値未満のコメント-6ポイント-5ポイント-4ポイント 1年前 (1子コメント)
Using the basic operands so that the values are calculable from the get go?
Your argument is empty until you show it true.
[–]anonemouse2010 2ポイント3ポイント4ポイント 1年前 (0子コメント)
The original elementary functions are addition, subtraction, multiplication and division because they have real world concrete examples.
I like how you move the bar.
[–]DeathAndReturnOfBMG 16ポイント17ポイント18ポイント 1年前 (1子コメント)
lol "per se"
He is now tagged as "Southpark Vampire"
π Rendered by PID 16207 on app-248 at 2015-09-21 05:40:58.115578+00:00 running 9d3820d country code: JP.
[–]RiemannZeta 55ポイント56ポイント57ポイント (22子コメント)
[–]abushk[S] 10ポイント11ポイント12ポイント (21子コメント)
[+][削除されました] (20子コメント)
[deleted]
[–]zifyoip 34ポイント35ポイント36ポイント (4子コメント)
[–]caedin8 0ポイント1ポイント2ポイント (3子コメント)
[–]zifyoip 10ポイント11ポイント12ポイント (1子コメント)
[–][deleted] -2ポイント-1ポイント0ポイント (0子コメント)
[–]gizmo686 0ポイント1ポイント2ポイント (0子コメント)
[–]RiemannZeta 9ポイント10ポイント11ポイント (11子コメント)
[–]abushk[S] 0ポイント1ポイント2ポイント (9子コメント)
[–]RiemannZeta 4ポイント5ポイント6ポイント (8子コメント)
[–]abushk[S] 0ポイント1ポイント2ポイント (0子コメント)
[–]stua8992 0ポイント1ポイント2ポイント (6子コメント)
[–]RiemannZeta 6ポイント7ポイント8ポイント (3子コメント)
[–]jazzwhizMathematical Physics 1ポイント2ポイント3ポイント (1子コメント)
[–]RiemannZeta 1ポイント2ポイント3ポイント (0子コメント)
[–]stua8992 0ポイント1ポイント2ポイント (0子コメント)
[–]zifyoip 0ポイント1ポイント2ポイント (1子コメント)
[–]stua8992 -1ポイント0ポイント1ポイント (0子コメント)
[–]trudunc -1ポイント0ポイント1ポイント (0子コメント)
[–]abushk[S] 2ポイント3ポイント4ポイント (1子コメント)
[+]Manticorp スコアが基準値未満のコメント-14ポイント-13ポイント-12ポイント (0子コメント)
[–]iorgfeflkd 18ポイント19ポイント20ポイント (0子コメント)
[–]drock_davis 18ポイント19ポイント20ポイント (4子コメント)
[–]abushk[S] 6ポイント7ポイント8ポイント (1子コメント)
[–]Unrouted 8ポイント9ポイント10ポイント (0子コメント)
[–]limes_limes_limes -1ポイント0ポイント1ポイント (1子コメント)
[–]orangejake 1ポイント2ポイント3ポイント (0子コメント)
[–]zifyoip 25ポイント26ポイント27ポイント (2子コメント)
[–]Chthonos 13ポイント14ポイント15ポイント (1子コメント)
[–]zifyoip 9ポイント10ポイント11ポイント (0子コメント)
[–]Save_the_landmines 3ポイント4ポイント5ポイント (2子コメント)
[–]philly_fan_in_chi 0ポイント1ポイント2ポイント (1子コメント)
[–][deleted] 3ポイント4ポイント5ポイント (0子コメント)
[–]Telegramsam75 2ポイント3ポイント4ポイント (0子コメント)
[–]RottMaster 9ポイント10ポイント11ポイント (3子コメント)
[–]AnticPosition 3ポイント4ポイント5ポイント (0子コメント)
[–]abushk[S] 3ポイント4ポイント5ポイント (1子コメント)
[–]RottMaster 5ポイント6ポイント7ポイント (0子コメント)
[–]clutchest_nugget 1ポイント2ポイント3ポイント (1子コメント)
[–]zifyoip 4ポイント5ポイント6ポイント (0子コメント)
[–][deleted] 1ポイント2ポイント3ポイント (2子コメント)
[–]abushk[S] 4ポイント5ポイント6ポイント (0子コメント)
[–]n3verloseApplied Math 5ポイント6ポイント7ポイント (0子コメント)
[+]FinFihlman スコアが基準値未満のコメント-63ポイント-62ポイント-61ポイント (14子コメント)
[–]zifyoip 28ポイント29ポイント30ポイント (11子コメント)
[+]FinFihlman スコアが基準値未満のコメント-71ポイント-70ポイント-69ポイント (10子コメント)
[–]zifyoip 23ポイント24ポイント25ポイント (9子コメント)
[+]FinFihlman スコアが基準値未満のコメント-61ポイント-60ポイント-59ポイント (8子コメント)
[–]zifyoip 38ポイント39ポイント40ポイント (4子コメント)
[–]christsassholeAlgebra 10ポイント11ポイント12ポイント (0子コメント)
[+]FinFihlman スコアが基準値未満のコメント-7ポイント-6ポイント-5ポイント (2子コメント)
[–][削除されました] (1子コメント)
[deleted]
[–]anonemouse2010 1ポイント2ポイント3ポイント (2子コメント)
[+]FinFihlman スコアが基準値未満のコメント-6ポイント-5ポイント-4ポイント (1子コメント)
[–]anonemouse2010 2ポイント3ポイント4ポイント (0子コメント)
[–]DeathAndReturnOfBMG 16ポイント17ポイント18ポイント (1子コメント)
[–]abushk[S] 0ポイント1ポイント2ポイント (0子コメント)