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Abstract

Free monads are a useful tool for abstraction, separating specification
from interpretation. However, a naive free monad implementation can lead
to stack overflow depending on the evaluation model of the host language.
This paper develops a stack-safe free monad transformer in PureScript,
a strict Haskell-like language compiling to Javascript, and demonstrates
certain applications - a safe implementation of coroutines, and a generic
mechanism for building stack-safe control operators.

Introduction

Techniques from pure functional programming languages such as Haskell have
been making their way into mainstream programming, slowly but surely. Ab-
stractions such as monoids, functors, applicative functors, monads, arrows, etc.
afford a level of expressiveness which can give great productivity gains, and
improved guarantees of program correctness.

However, naive implementations of these abstractions can lead to poor perfor-
mance, depending on the evaluation order of the host language. In particular,
deeply recursive code can lead to stack overflow.

One example of a desirable abstraction is the free monad for a functor f. Free
monads allow us to separate the specification of a monad (by specifying the
base functor f), from its implementation. In this paper, we will develop a
safe implementation of free monad and the equivalent monad transformer in
[PureScript], a strict Haskell-like language which compiles to Javascript.

A naive implementation of the free monad in PureScript might look like this:

newtype Free f a = Free (Either a (f (Free f a)))

resume :: forall f a. Free f a -> Either a (f (Free f a))
resume (Free a) = a
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liftFree :: forall f a. (Functor f) => f a -> Free f a
liftFree = Free <<< Right <<< map return

runFree :: forall f m a.
(Monad m) =>
(f (Free f a) -> m (Free f a)) ->
Free f a -> m a

runFree phi = either return ((>>= (runFree phi)) <<< phi) <<< resume

The Free f type constructor is made into a Monad for any Functor f. However,
this implementation quickly leads to the problem of stack overflow, both during
construction of a computation of type Free f a, and during interpretation.

The free monad can be generalized to a monad transformer, where a monad
m is used to track effects at each step of the computation. Current attempts
to generalize stack-safe implementations of the free monad to the free monad
transformer FreeT have met with difficulty. In this paper, we’ll construct a
stack-safe implementation of the free monad and its monad transformer, by
imposing a restriction on the class of monads which can be transformed.

We will work in the PureScript programming language, a pure functional lan-
guage inspired by Haskell which compiles to Javascript. PureScript features an
expressive type system, with support for type classes and higher-kinded types,
but unlike Haskell, evaluation in PureScript is eager, so PureScript provides a
good environment in which to demonstrate these ideas. The same techniques
should be applicable to other languages such as Scala, however.

Computing with Free Monads

Our free monad type constructor is parameterized by a Functor which describes
the terms we want to use, and the Monad instance provides a way to combine
those terms. A computation of type Free f a is either complete, returning
value of type a, or is a suspension. The operations available at a suspension are
described by the functor f.

If Free f represents syntax trees for a language with operations described by f,
then the monadic bind function implements substitution at the leaves of the tree,
substituting new computations depending on the result of the first computation.

For example, we might choose the following functor as our base functor:

data CounterF a
= Increment a
| Read (Int -> a)
| Reset a
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instance functorCounterF :: Functor CounterF where
map f (Increment a) = Increment (f a)
map f (Read k) = Read (f <<< k)
map f (Reset a) = Reset (f a)

This functor describes three possible operations on a simulated counter:
Increment, which increments the counter by one, Read, which provides the
current value of the counter, and Reset which resets the counter to zero.

When Free is applied to the functor CounterF, the type variable a will be
instantiated to Free f a. a represents the continuation of the computation after
the current step.

We can define constructors for our three operations, and a synonym for our free
monad:

type Counter = Free CounterF

increment :: Counter Unit
increment = liftFree (Increment unit)

read :: Counter Int
read = liftFree (Read id)

reset :: Counter Unit
reset = liftFree (Reset unit)

Given these constructors, and the Monad instance above, we can construct
computations in our new Counter monad:

readAndReset :: Counter Int
readAndReset = do

current <- read
reset
return current

Running a computation in the Counter monad requires that we give an interpre-
tation for the operations described by the functor CounterF. We must choose
a monad m in which to interpret our computation, and then provide a natural
transformation from CounterF to m.

One possible implementation might use PureScript’s Eff monad of extensible
effects, using a scoped reference variable (via the ST effect) to keep track of the
counter state:
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runCounter :: forall eff h a.
STRef h Int ->
Counter a ->
Eff (st :: ST h | eff) a

runCounter ref = runFree go
where
go (Increment a) = do

modifySTRef ref (1 +)
return a

go (Read k) = map k (readSTRef ref)
go (Reset a) = do

writeSTRef ref 0
return a

Other implementations might use the asynchronous effect monad Aff to update
a counter on a remote server, or add log messages to the implementation above,
using the Eff monad to combine console and mutation effects. This is the power
of working with free monads - we have completely separated the interpretation
of our computations from the syntax that describes them.

Free Monad Transformers

The free monad construction given above can be generalized to a free monad
transformer, FreeT:

newtype FreeT f m a = FreeT (m (Either a (f (FreeT f m a))))

resumeT :: forall f m a. FreeT f m a -> m (Either a (f (FreeT f m a)))
resumeT (FreeT a) = a

liftFreeT :: forall f m a. (Functor f, Monad m) => f a -> FreeT f m a
liftFreeT = FreeT <<< return <<< Right <<< map return

runFreeT :: forall f m a.
(Monad m) =>
(f (FreeT f m a) -> m (FreeT f m a)) ->
FreeT f m a -> m a

runFreeT phi = either return ((>>= (runFreeT phi)) <<< phi) <=< resumeT

The free monad transformer allows us to interleave effects from the base monad
m at each step of the computation.

The Functor and Monad instances for FreeT look similar to the instances for
Free. In addition, we now also have an instance for MonadTrans, the type class
of monad transformers:
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instance functorFreeT :: (Functor f, Functor m) =>
Functor (FreeT f m) where

map f = FreeT <<< map (bimap f (map (map f))) <<< resumeT

instance applyFreeT :: (Functor f, Monad m) =>
Apply (FreeT f m) where

apply = ap

instance bindFreeT :: (Functor f, Monad m) =>
Bind (FreeT f m) where

bind (FreeT a) f = FreeT (a >>= go)
where
go (Left a) = resumeT (f a)
go (Right fs) = return (Right (map (>>= f) fs))

instance applicativeFreeT :: (Functor f, Monad m) =>
Applicative (FreeT f m) where

pure = FreeT <<< pure <<< Left

instance monadFreeT :: (Functor f, Monad m) =>
Monad (FreeT f m)

instance monadTransFreeT :: (Functor f) =>
MonadTrans (FreeT f) where

lift = FreeT <<< map Left

The Counter operations given above can be lifted to work in the free monad
transformer:

type CounterT = FreeT CounterF

incrementT :: forall m. (Monad m) => CounterT m Unit
incrementT = liftFreeT (Increment unit)

readT :: forall m. (Monad m) => CounterT m Int
readT = liftFreeT (Read id)

resetT :: forall m. (Monad m) => CounterT m Unit
resetT = liftFreeT (Reset unit)

We can now modify our original computation to support console logging, for
example:

readAndResetT :: forall eff.
CounterT (Eff (console :: CONSOLE | eff)) Int
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readAndResetT = do
current <- readT
lift $ log $ "The current value is " ++ show current
resetT
return current

Deferring Monadic Binds

The naive implementation of Free given above works for small computations
such as readAndReset example. However, the runFree function is not tail
recursive, and so interpreting large computations often results in stack overflow.
Techniques such as monadic recursion become unusable. It is not necessarily
possible to even build a large computation using Free, let alone evaluate it, since
each monadic bind has to traverse the tree to its leaves.

Fortunately, a solution to this problem has been known to the [Scala] community
for some time. [Bjarnason] describes how to defer monadic binds in the free
monad, by capturing binds as a data structure. Free can then be interpreted
using a tail recursive function, collapsing the structure of deferred monadic binds,
giving a free monad implementation which supports deep recursion.

However, there is a restriction: runFree cannot be implemented safely for an
arbitrary target monad m. Only monads which are stack-safe due to some
implementation detail (for example, by trampolining) can be used as the target
monad m.

Additionally, in [Bjarnason], when discussing the extension to a monad trans-
former, it is observed that:

“In the present implementation in Scala, it’s necessary to forego the
parameterization on an additional monad, in order to preserve tail
call elimination. Instead of being written as a monad transformer
itself, Free could be transformed by a monad transformer for the
same effect.”

That is, it is not clear how to extend the Gosub technique to the free monad
transformer if we want to be able to transform an arbitrary monad.

The approach of putting using another monad transformer to transform Free is
strictly less expressive than using the free monad transformer, since we would
be unable to transform monads which did not have an equivalent transformer,
such as Eff.

A variant of this technique is used to implement free monads in PureScript, in
the purescript-free library.
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newtype GosubF f a b = GosubF (Unit -> Free f b) (b -> Free f a)

data Free f a
= Free (Either a (f (Free f a)))
| Gosub (Exists (GosubF f a))

Here, the Gosub data constructor has been added to the original definition of
Free. Gosub captures the arguments to a monadic bind, existentially hiding the
return type b of the intermediate computation.

To understand how purescript-free implements runFree for this modified
structure, we need to understand the class of tail-recursive monads.

Tail Recursive Monads

Our solution is to reduce the candidates for the target monad m from an arbi-
trary monad, to the class of so-called tail-recursive monads. To motivate this
abstraction, let’s consider tail call elimination for pure functions.

The PureScript compiler performs tail-call elimination for self-recursive functions,
so that a function like pow below, which computes integer powers by recursion,
gets compiled into an efficient while loop in the generated Javascript.

pow :: Int -> Int -> Int
pow n p = go (Tuple 1 p)

where
go (Tuple acc 0) = acc
go (Tuple acc p) = go (Tuple (acc * n) (p - 1))

However, we do not get the same benefit when using monadic recursion. Suppose
we wanted to use the Writer monad to collect the result in the Product monoid:

powWriter :: Int -> Int -> Writer Product Unit
powWriter n = go

where
go 0 = return unit
go m = do

tell n
go (m - 1)

This time, we see a stack overflow at runtime for large inputs to the powWriter
function, since the function is no longer tail-recursive: the tail call is now inside
the call to the Writer monad’s bind function.
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Large inputs are not the only concern. Monadic combinators such as forever,
which repeats a monadic action indefinitely, become useless, since they involve
an arbitrarily large stack of monadic binds.

A tail-recursive function can make progress in two ways: it can return value
immediately, or it can call itself (in tail position) recursively. This motivates
the definition of the tailRec function, which expresses a generic tail-recursive
function:

tailRec :: forall a b. (a -> Either a b) -> a -> b

Instead of using explicit tail recursion, we can pass a helper function to tailRec
which returns a value using the Left constructor. To break from the loop, we
use the Right constructor.

tailRec itself is implemented using a tail-recursive helper function, which makes
this approach very similar to the approach of using a trampoline:

tailRec :: forall a b. (a -> Either a b) -> a -> b
tailRec f a = go (f a)

where
go (Left a) = go (f a)
go (Right b) = b

We can refactor the original pow function to isolate the recursive function call
using tailRec:

pow :: Int -> Int -> Int
pow n p = tailRec go (Tuple 1 p)

where
go :: Tuple Int Int -> Either (Tuple Int Int) Number
go (Tuple acc 0) = Right acc
go (Tuple acc p) = Left (Tuple (acc * n) (p - 1))

Now we can be sure that our function runs using a constant amount of stack, as
long as we know tailRec itself does not grow the stack. We no longer need to
rely on the compiler’s tail-call elimination optimization to take effect.

However, the type of tailRec can be generalized to several monads using the
following type class, which is defined in the purescript-tailrec library:

class (Monad m) <= MonadRec m where
tailRecM :: forall a b. (a -> m (Either a b)) -> a -> m b
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Here, both the helper function, and the return value have been wrapped using
the monad m.

tailRecM can actually be implemented for any monad m, by modifying the
tailRec function slightly as follows:

tailRecM :: forall a b. (a -> m (Either a b)) -> a -> m b
tailRecM f a = f a >>= go

where
go (Left a) = f a >>= go
go (Right b) = return b

However, this would not necessarily be a valid implementation of the MonadRec
class, because MonadRec comes with an additional law:

A valid implementation of MonadRec must guarantee that the stack
usage of tailRecM f is at most a constant multiple of the stack
usage of f itself.

This unusual law is not necessarily provable for a given monad using the usual
substitution techniques of equational reasoning, and might require a slightly
more subtle proof.

The forever combinator can be given a safe implementation for monads in the
MonadRec class:

forever :: forall m a b. (MonadRec m) => m a -> m b

MonadRec becomes useful because it has a surprisingly large number of valid
instances: tailRec itself gives a valid implementation for the Identity monad,
and there are valid instances for PureScript’s Eff and Aff monads. There are
also valid MonadRec instances for some standard monad transformers: ExceptT,
ReaderT, StateT, WriterT, and RWST.

MonadRec gives a useful generalization of tail recursion to monadic contexts. We
can rewrite powWriter as the following safe variant, for example:

powWriter :: Int -> Int -> Writer Product Unit
powWriter n = tailRecM go

where
go :: Int -> Writer Product (Either Int Unit)
go 0 = return (Right unit)
go m = do

tell n
return (Left (m - 1))
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Interpreting Free Monads Safely

MonadRec can be used to implement a safe version of the runFree function, using
the extended free monad structure which defers monadic binds.

[Bjarnason] explains how to implement the resume function as a tail-recursive
function. resume performs the first step of a free monad computation, unpacking
deferred monadic binds where necessary. In purescript-free, its type signature
is:

resume :: forall f a.
(Functor f) =>
Free f a ->
Either (f (Free f a)) a

Given a safe implementation of resume, a stack-safe implementation of runFree
becomes simple, using MonadRec:

runFree :: forall f m a.
(Functor f, MonadRec m) =>
(f (Free f a) -> m (Free f a)) ->
Free f a ->
m a

runFree phi = tailRecM \m ->
case resume m of

Left fs -> map Left (phi fs)
Right a -> return (Right a)

Here, the MonadRec instance is used to define a tail-recursive function which
unrolls the data structure of monadic binds, one step at a time.

This is enough to allow us to use monadic recursion with Free in PureScript, and
then interpret the resulting computation in any monad with a valid MonadRec
instance.

We have enlarged our space of valid target monads to a collection closed under
several standard monad transformers.

Stack-Safe Free Monad Transformers

The class of tail-recursive monads also allow us to define a safe free monad
transformer in PureScript.

We can apply the Gosub technique to our naive implementation of FreeT:
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data GosubF f m b a = GosubF (Unit -> FreeT f m a) (a -> FreeT f m b)

data FreeT f m a
= FreeT (Unit -> m (Either a (f (FreeT f m a))))
| Gosub (Exists (GosubF f m a))

We also thunk the computation under the Free constructor, which is necessary
to avoid stack overflow during construction.

The instances for Functor and Monad generalize nicely from Free to FreeT,
composing binds by nesting Gosub constructors. This allows us to build compu-
tations safely using monadic recursion. As with Free, the remaining problem is
how to run a computation in some (tail-recursive) target monad m.

Bjarnason’s resume function generalizes to the FreeT case, using tailRecM to
express the (monadic) tail recursion:

resume :: forall f m a.
(Functor f, MonadRec m) =>
FreeT f m a ->
m (Either a (f (FreeT f m a)))

resume = tailRecM go
where
go :: FreeT f m a -> m (Either (FreeT f m a) (Either a (f (FreeT f m a))))
go (FreeT f) = map Right (f unit)
go (Gosub e) = runExists (\(GosubF m f) ->

case m unit of
FreeT m -> do

e <- m unit
case e of

Left a -> return (Left (f a))
Right fc -> return (Right (Right (map (\h -> h >>= f) fc)))

Gosub e1 -> runExists (\(GosubF m1 f1) ->
return (Left (bind (m1 unit) (\z -> f1 z >>= f)))) e1) e

Similarly, our runFree function generalizes using MonadRec to a safe implemen-
tation of runFreeT, allowing us to interpret FreeT f m whenever m itself is a
tail-recursive monad:

runFreeT :: forall f m a.
(Functor f, MonadRec m) =>
(f (FreeT f m a) -> m (FreeT f m a)) ->
FreeT f m a ->
m a

runFreeT interp = tailRecM (go <=< resume)
where
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go :: Either a (f (FreeT f m a)) -> m (Either (FreeT f m a) a)
go (Left a) = return (Right a)
go (Right fc) = do

c <- interp fc
return (Left c)

We have built a safe free monad transformer, with the restriction that we can only
interpret the computations we build if the underlying monad is a tail-recursive
monad.

Stack Safety for Free

We are free to choose any functor f, and we are able to build a stack-safe
free monad transformer over f. In particular, we can consider the free monad
transformer when f is the Identity functor.

newtype Identity a = Identity a

runIdentity :: forall a. Identity a -> a
runIdentity (Identity a) = a

type SafeT = FreeT Identity

runSafeT :: forall m a. (MonadRec m) => SafeT m a -> m a
runSafeT = runFreeT (return <<< runIdentity)

SafeT m is a stack-safe monad for any monad m. The Gosub technique allows
us to build large SafeT m computations, and runSafeT allows us to interpret
them, whenever m is a tail-recursive monad.

Since SafeT is a monad transformer, we can interpret any computation in m
inside SafeT m.

This means that for any tail-recursive monad m, we can work instead in SafeT m,
including using deeply nested left and right associated binds, without worrying
about stack overflow. When our computation is complete, we can use runSafeT
to move back to m.

For example, this computation quickly terminates with a stack overflow:

main :: Eff (console :: CONSOLE) Unit
main = go 100000

where
go n | n <= 0 = return unit
go n = do
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print n
go (n - 2)
go (n - 1)

but can be made productive, simply by lifting computations into SafeT:

main :: Eff (console :: CONSOLE) Unit
main = runSafeT $ go 100000

where
go n | n <= 0 = return unit
go n = do
lift (print n)
go (n - 2)
go (n - 1)

Application: Coroutines

Free monad transformers can be used to construct models of coroutines, by using
the base functor to specify the operations which can take place when a coroutine
suspends.

For example, we can define a base functor Emit which supports a single operation
at suspension, emit, which emits a single output value:

data Emit o a = Emit o a

instance functorEmit :: Functor (Emit o) where
map f (Emit o a) = Emit o (f a)

We can define a type Producer of coroutines which only produce values:

type Producer o = FreeT (Emit o)

emit :: forall o m. (Monad m) => o -> FreeT (Emit o) m Unit
emit o = liftFreeT (Emit o unit)

By using lift, we can create coroutines which perform actions in some base
monad at each suspension:

producer :: forall eff.
Producer String (Eff (console :: CONSOLE | eff)) Unit

producer = forever do
lift (log "Emitting a value...")
emit "Hello World"
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We can vary the underlying Functor to construct coroutines which produce
values, consume values, transform values, and combinations of these. This is
described in [Blaževic], where free monad transformers are used to build a library
of composable coroutines and combinators which support effects in some base
monad.

Given a stack-safe implementation of the free monad transformer, it becomes
simple to translate the coroutines defined in [Blaževic] into PureScript. In
addition to Emit, we can define a functor for awaiting values, and a coroutine
type Consumer:

data Await i a = Await (i -> a)

instance functorAwait :: Functor (Await i) where
map f (Await k) = Await (f <<< k)

type Consumer i = FreeT (Await i)

await :: forall i m. (Monad m) => Consumer i m i
await o = liftFreeT (Await id)

Here is an example of a Consumer which repeatedly awaits a new value before
logging it to the console:

consumer :: forall eff.
(Show a) =>
Consumer a (Eff (console :: CONSOLE | eff)) Unit

consumer = forever do
s <- await
lift (print s)

The use of the safe FreeT implementation, and MonadRec make these coroutines
stack-safe.

The purescript-coroutines library defines a stack-safe combinator fuseWith
using MonadRec. fuseWith can be used to connect compatible coroutines in
various ways, by defining how their operations interact when they suspend:

fuseWith :: forall f g h m a.
(Functor f, Functor g, Functor h, MonadRec m) =>
(forall a b c. (a -> b -> c) -> f a -> g b -> h c) ->
FreeT f m a -> FreeT g m a -> FreeT h m a

For example, fuseWith can be used to define an operator $$, to connect producers
and consumers:
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($$) :: forall o m a.
(MonadRec m) =>
Producer o m a ->
Consumer o m a ->
SafeT m a

($$) = fuseWith \f (Emit o a) (Await k) -> Identity (f a (k o))

We can connect our producer and consumer pair, and then run them together in
parallel using a constant amount of stack:

main = runSafeT (producer $$ consumer)

Running this example will generate an infinite stream of "Hello World" mes-
sages printed to the console, interleaved with the debug message "Emitting a
value...".

In a pure functional language like PureScript, targeting a single-threaded lan-
guage like Javascript, coroutines built using FreeT might provide a natural way
to implement cooperative multithreading, or to interact with a runtime like
NodeJS for performing tasks like non-blocking file and network IO.

Application: Lifting Control Operators

The fact that SafeT m is stack-safe for any monad m provides a way to turn
implementations of control operators with poor stack usage, into implementations
with good stack usage for free.

By a control operator, we mean functions like mapM_, foldM, replicateM_ and
iterateM, which work over an arbitrary monad.

Consider, for example, the following definition of replicateM_, which replicates
a monadic action some number of times, ignoring its results:

replicateM_ :: forall m a. (Monad m) => Int -> m a -> m Unit
replicateM_ 0 _ = return unit
replicateM_ n m = do

_ <- m
replicateM_ (n - 1) m

This function is not stack-safe for large inputs. There is a simple, safe im-
plementation of replicateM_ where the Monad constraint is strengthened to
MonadRec, but for the purposes of demonstration, let’s see how we can derive a
safe replicateM_ instead, using SafeT.

It is as simple as lifting our monadic action from m to SafeT m before the call to
replicateM, and lowering it down using runSafeT afterwards:
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safeReplicateM_ :: forall m a. (MonadRec m) => Int -> m a -> m Unit
safeReplicateM_ n m = runSafeT (replicateM_ n (lift m))

We can even capture this general technique as follows. The Operator type class
captures those functions which work on arbitrary monads, i.e. control operators:

type MMorph f g = forall a. f a -> g a

class Operator o where
mapO :: forall m n. MMorph n m -> MMorph m n -> o n -> o m

Here, the MMorph f g type represents a monad morphism from f to g. mapO is
given a pair of monads, m and n, and a pair of monad morphisms, one from m to
n, and one from n to m. mapO is responsible for using these monad morphisms
to adapt an implementation of a control operator on m to an implementation of
that operator on n.
In practice, the SafeT m monad will be used in place of n, where m is some tail
recursive monad. However, the generality of the type prevents the developer
from implementing mapO incorrectly.
We can define a function safely for any choice of Operator:

safely :: forall o m a.
(Operator o, MonadRec m) =>
(forall t. (Monad t) => o t) ->
o m

safely o = mapO runProcess lift o

safely allows us to provide a control operator for any Monad, and returns an
equivalent, safe combinator which works with any MonadRec. Essentially, safely
lets us trade the generality of a Monad constraint for the ability to be able to
write code which is not necessarily stack-safe,
Given this combinator, we can reimplement our safe version of replicateM_ by
defining a wrapper type and an instance of Operator:

newtype Replicator m = Replicator (forall a. Int -> m a -> m Unit)

instance replicator :: Operator Replicator where
mapO to fro (Replicator r) = Replicator \n m -> to (r n (fro m))

runReplicator :: forall m a. Replicator m -> Int -> m a -> m Unit
runReplicator (Replicator r) = r

safeReplicateM_ :: forall m a. (MonadRec m) => Int -> m a -> m Unit
safeReplicateM_ = runReplicator (safely (Replicator replicateM_))
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We can use the safely combinator to derive safe versions of many other control
operators automatically.

Further Work

Completely-Iterative Monads

In [Capretta], the type of tailRecM appears in the definition of a completely-
iterative monad. Completely-iterative monads seem to solve a related problem:
where tail-recursive monads enable stack-safe monadic recursion in a strict
language like PureScript, where the evaluation model leads to stack overflow,
completely-iterative monads provide the ability to use iteration in total languages
where non-termination is considered an effect.

Our SafeT monad transformer looks suspiciously similar to the free completely-
iterative monad, defined as:

newtype IterT m a = IterT (m (Either a (IterT m a)))

where the fixed point is assumed to be the greatest fixed point.

This connection might be worth investigating further.

Extension to Other Monads

The class of tail-recursive monads is closed under some useful monad transformers,
but is missing some standard monads. For example, it is not obvious how to
implement MonadRec safely for the List monad

Perhaps it is possible to identify a larger class of monads which still support the
construction of a safe free monad transformer.
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