
QUIC
Experiments

● A reliable, multiplexed transport over UDP
● Always encrypted
● Reduces latency
● Runs in user-space
● Open sourced in Chromium

QUIC
Quick UDP Internet Connections

New transport designed to reduce web latency
● TCP + TLS + SPDY over UDP
● Faster connection establishment than TLS/TCP

○ 0-RTT usually, 1-RTT sometimes
● Deals better with packet loss than TCP
● Has Stream-level and Connection-level Flow Control
● FEC recovery
● Multipath

*except for HTTP/2 headers, which should be fixed as well.

What is QUIC?

Where does it fit?

TLS 1.2

HTTP/2

TCP

IP

QUIC

UDP

HTTP/2 API

Experiments
Conducted at scale between Chrome and Google servers (including GGC)

Most experiments are enabled with tags in the COPT field of the CHLO.
See crypto_protocol.h in Chromium for a list of tags.

https://code.google.com/p/chromium/codesearch#chromium/src/net/quic/crypto/crypto_protocol.h

0-RTT’s impact
● About 75% connections are 0-RTT connections
● Accounts for between 50 to 80% of the median latency improvements
● 0-RTT helps more when Chrome’s pre-connect isn’t able to predict the host
● No significant effect on other transport stats

Connection Pooling
● QUIC’s connection pooling is equivalent to HTTP/2’s
● Improves latency about 10% vs disabling it
● No latency metrics were worse
● Could be improved with better connection pooling via Alt-Svc

Packet Pacing
● Similar to Linux kernel’s fq qdisc
● Pacing does

○ improve tail page load latency
○ reduce retransmits ~25%

● Pacing does not
○ change median page load latency
○ change YouTube QoE

IW10 vs IW32
● QUIC defaults to 32, similar to HTTP/2 default
● 30% of QUIC’s "time to playback" gains for YouTube due to IW32
● IW10 had equal or slightly worse latency, even at the 95%
● IW10 decreased retransmit rate slightly

○ IW10 without pacing had higher retransmit rate than IW32 with pacing
● (Invoked with IW10 connection option. IW03, IW20, and IW50 also available)

Reno vs Cubic
● QUIC defaults to Cubic, similar to Linux
● Latency across all services is extremely similar between Reno and Cubic
● QoE is extremely similar between Reno and Cubic
● Retransmits are ~20% lower with Reno than Cubic
● (Reno available with the RENO connection option)

Why not default to Reno?
We’re thinking about it...

1 vs 2 Connection Emulation
● QUIC defaults to 2-connection emulation
● 2-connection shows large improvements in YouTube QoE
● 1- vs 2-connection has a negligible effect on median page load latency

○ 2-connection shows slight improvement in tail latency
● Retransmits are 20% higher with 2-connection

Tail Loss Probe
● QUIC defaults to 2 TLPs before RTO
● Disabling TLP has no effect on median latency
● TLP improves 95% latency almost 1%
● TLP Improves YouTube rebuffer rate almost 1%
● Disabling TLP reduces retransmits 5%

Time based loss detection
● QUIC defaults to FACK with a fixed dupack threshold of 3
● Time-based loss detection waits ¼ RTT after the first NACK for the packet to be lost
● Shows no significant improvements vs FACK on user-facing networks

