
Comparison of Erlang Runtime
System and Java Virtual Machine

Tõnis Pool

University of Tartu
tonis.pool@gmail.com

Supervised by Oleg Batrashev

Abstract

This report gives a high level overview of the Erlang Runtime System (ERTS) and the Java Virtual Machine
(JVM), comparing the two in terms of overall architecture, memory layout, parallelism/concurrency and
runtime optimisations. More specifically I’ll look at the HotSpot JVM provided by Oracle and the default
BEAM implementation open sourced by Ericsson.

1. Introduction

There are many different virtual machines
in existence nowadays packing a grow-
ing number of clever tricks to make them

run as fast as possible. The JVM is perhaps the
most known virtual machine and one that’s
received couple of decades’ worth of improve-
ments and optimisations.

Somewhat similarly to Java, Erlang is a
general-purpose concurrent, garbage-collected
programming language that nowadays runs on
a virtual machine and has been around even
longer than Java. The whole runtime system to-
gether with the language, interpreter, memory
handling is called the Erlang Runtime System,
but the virtual machine is often referred to also
as the BEAM.

1.1. JVM

The term Java Virtual Machine specifies 3 differ-
ent notions - a specification of an abstract stack
machine, a implementation of that specification
and a running process. The specification makes
sure that different implementations are inter-
changeable, but on other hand isn’t very strict
about areas such as memory layout, garbage
collection algorithms and instruction optimisa-
tions, allowing for many different approaches.
The HotSpot VM provided by Oracle is the
most widely used implementation, which is

why it was chosen for comparison.
The JVM works by executing bytecode state-

ments from a class file, generated by compiling
the java source code. This indirection is what
gives programmers the ability to compile their
source code once and then execute it on differ-
ent platforms that have JVM implementations.

1.2. ERTS

Unlike the JVM, Erlang doesn’t have a formal
specification for it’s runtime nor for the pro-
gramming language. This makes it difficult
to have various implementations, as they all
have to derive the semantics from the de facto
BEAM implementation[1]. But similarly to Java
ERTS works by executing an intermediate rep-
resentation of erlang source code, also known
as BEAM code. As mentioned there’s no speci-
fication for the generated instructions, though
a few unofficial documents are available[2].

Quite unlike the Java programming lan-
guage Erlang is a functional programming lan-
guage based on the actor model, which dates
back to 1973[3]. The actor model specifies the
actor as the unit of concurrency. In erlang ac-
tors are called processes. Actors can only com-
municate with each other by sending messages,
but are otherwise independent, which allows
to run them in parallel with each other[4].

Because of this distinction, that the Er-
lang language focuses specifically on the actor

1

mailto:tonis.pool@gmail.com

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

model, comparing the JVM with ERTS can be
seen as comparing apples and carrots, because
the ERTS is heavily geared and optimised for
this specific view of the world, where the JVM
has no such prejudices.

2. Memory Layout

2.1. JVM

Figure 1 shows the general architecture of the
HotSpot VM when looked upon as memory
areas[5].

Figure 1: Simplified JVM memory layout

There’s a shared heap, where all objects
and arrays live and then there’s a non heap
area designated for metadata about the classes
loaded and a Code Cache, which is used for
compilation and storage of methods that have
been compiled to native code by the JIT com-
piler.

Every thread in the JVM has a program
counter, which holds the address of the current
instruction (if it’s not native), a stack, which
holds frames for each executing method and a
native stack. Every thread in JVM is mapped
one-to-one to an operating system (OS) level
thread, which is then scheduled and managed
by the OS.

Heap on the HotSpot VM consists of a
three distinct areas (also known as generations)

called Eden, two smaller Survivor and Tenured
spaces. This optimisation stems from the ob-
servation that most objects die young, thus it
makes sense to put them into a separate area
and garbage collect that smaller area more of-
ten than the whole heap[6].

The JVM has many different Garbage Col-
lection (GC) algorithms embedded, which cater
to different needs of the application. In gen-
eral to collect garbage from the shared heap
a stop-the-world pause is needed, where all
application threads are halted. Different GC
strategies optimise either for throughput - total
GC overhead should be low, but long pauses
are allowed - or latency - each stop-the-world
pause should be as short as possible. Based on
different heuristics (like what kind of machine

2

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

it’s running on) the JVM will choose a strategy,
but users can also enforce some strategy and

give it some latency goals for example[7].

Figure 2: Simplified ERTS memory layout

2.2. ERTS

Figure 2 shows the general architecture of the
Erlang Runtime System when looked upon as
memory areas[8]. The major difference here
is that instead of having a single shared heap,
each process in Erlang has it’s own. The same
memory area is also used for the stack of the
process, where the two are growing towards
each other. Such a setup makes it very cheap to
check wether a process is running out of heap
or stack space.

Besides a heap and a stack each process
has a process control block, which is used to
hold various metadata about the process and
a message queue. Binary data that is larger
than 64 bytes is kept in a separate area, so that
different processes could simply refer to it by
a pointer.

Similarly to the JVM ERTS uses a genera-
tional garbage collection, meaning the heap is
divided into a young and old generation. The
GC strategy used is a copying collector (except
for the binary area, which is garbage collected
by reference counting), meaning it will allocate
another memory area and then copy over each

element that is still referenced, starting with
the root set[8].

The per process heap architecture has many
benefits, one of which is that because each pro-
cess has it’s own heap and there are presum-
ably numerous process’s, each heaps’ root set
can be very small and can be garbage collected
quickly in isolation, without affecting other
running processes. Meaning there aren’t any
global stop-the-world pauses.

When a process dies all it’s memory can be
deallocated right away, which means processes
that are short lived or don’t generate much
garbage, may never go through a single GC
cycle. The above (+ true preemptive schedul-
ing, that is discussed later) gives Erlang the
marketed soft real-time capabilities[9], where
there aren’t global pauses in the application,
which often happen on the JVM.

3. Parallelism and Concurrency

Now for the tricky bit. Erlang is marketed
as a tool for building massively scalable soft
real-time systems with requirements on high
availability[9]. It’s often used in 99.999% up-

3

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

time guaranteed systems[10]. Java on the other
hand is a more general-purpose programming
language, used in fields such as high frequency
trading to embedded devices.

3.1. Shared state

In 1971 Edsger Dijkstra posed and solved the
now famous the Dining Philosophers Problem
about concurrency. His solution involved a
construct commonly known as a semaphore,
which restrict access to a shared resource[11].
Dijkstra’s solution is often referred to as shared
state concurrency, which is the programming
model Java uses.

The JVM has a single heap and sharing state
between concurrent parties is done via locks
that guarantee mutual exclusion to a specific
memory area. This means that the burden of
guaranteeing correct access to shared variables
lies on the programmer, who must guard the
critical sections by locks. However this is noto-
riously difficult to do, leading to widely spread
belief that concurrency is hard[12].

There are numerous reasons why shared
state between threads brings troubles:

1. Deadlocks - occurs when two threads
both need resources A and B. First thread
locks A first and then tries to get B,
whereas the second thread operates in
the opposite order. This results in a situa-
tion where both threads have locked one
resource and wait for the other thread to
release the other resource.

2. Race conditions - occurs when the pro-
grammer hasn’t correctly guaranteed the
order of execution between two threads.
Which means that the correctness of the
program depends on the OS scheduler,
which is not deterministic, resulting in
hard to reproduce errors.

3. Spending too much time in the critical
section - occurs when a thread after ac-
quiring a shared resources holds it for too
long, effectively making all other inter-
ested parties wait and do nothing during
that time.

As mentioned in the introduction, Erlang
uses the actor model, where the only means
to share state between concurrent and/or par-
allel actors is message passing. Furthermore,
because each process has its own heap, there
isn’t any shared state by design (except for the
binary and a few other Erlang specific memory
areas). Removing shared state and relying only
on message passing has the potential to make
concurrency easy again[13].

"Erlang is to locks what Java is to
pointers[11]"

Arguably message passing concurrency
model is on a higher abstraction level than
using locks. Though because it’s a higher ab-
straction it also removes some of the hardships
of using locks and is easier to use, because we
don’t have to guarantee the correctness of the
program in terms of concurrency anymore, the
runtime does that for us.

Similarly the message passing style of con-
currency can be successfully modeled with
locks on the JVM. The Akka framework is es-
sentially doing just this and brings the actor
model to the JVM[14]. Using the Akka frame-
work on the JVM makes the experience very
similar to Erlang with the added benefit of
ability to use the much larger Java ecosystem.

3.2. Message Passing

Because of the heap per process architecture
in ERTS, message passing is done by coping
the message from one process heap to another.
This can be somewhat surprising as it would
be much cheaper to simply pass a pointer to
the message from one process to another, but
it would require some shared memory area for
the processes.

ERTS has actually experimented with both
a shared and a hybrid heap architectures in the
past[10], but after multithreading support was
added to the BEAM the implementations were
broken and later removed from ERTS[15]. A
hybrid heap architecture is one where each pro-
cess still has a separate heap, but messages that
are to be sent to other processes are allocated

4

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

in a shared memory area to allow fast message
passing. Experimentation showed that such
an approach has promise, but as stated, the
implementation was left unfinished[15].

The original reason for going with the copy-
ing strategy was that the destination process
might be on another machine. If we are pass-
ing messages as pointers among processes on
a single machine, but doing something else for
processes on different machines, means that
the error handling code will be more difficult
and has to be handled separately. The underly-
ing reason was to make the semantics of local
and remote failures the same[16].

Furthermore, the "free lunch" for perfor-
mance is long over, meaning processors aren’t
getting faster, instead multicore processors are
standard[17]. Providing a coherent picture of
memory to all cores is increasingly expensive
and one can think of your cpu as a distributed
system[18]. Whether it’s hidden from the pro-
grammer or not, the cpu will have to do some
copying when a cache miss occurs for example.
When data sharing times between cores con-
tinue to rise it makes sense to do the expensive
operation of copying immediately[16].

3.3. Lightweight threads

As mentioned before, the JVM maps its threads
one-to-one to OS level threads, which are then
scheduled by the OS scheduler, but in Erlang
a process is simply a separate memory area
and are mapped n-to-m to OS level threads.
Since 2006 ERTS supports true multithreading
through Symmetric Multi Processing (SMP).
With SMP ERTS starts with the same number
of schedulers as there are cores[19].

Each scheduler has a run queue that con-
tains runnable processes. A process runs until
it tries to receive a message, but the mailbox
was empty, or it runs out of reductions. The
meaning of reductions in ERTS is not clearly
defined, but they should represent "units of
work" and are roughly equivalent to function
calls. Each process that starts running initially
has 2000 reductions, and when it rans out is
put at the end of the run queue[20].

The effect is that Erlang is one of a few
languages that actually does preemptive mul-
titasking. The reduction count of 2000, which
is sub 1ms, is quite low and forces many small
context switches between the Erlang processes.
But this also ensures that an Erlang system
tends to degrade in a graceful manner when
loaded with more work[21].

Schedulers will also balance work between
each other. The strategy can be configured to ei-
ther balancing load out as evenly as possible or
using the least amount of schedulers (putting
the other ones to sleep, conserving power for
example)[20].

The important note here is that blocking a
process doesn’t block a scheduler, it will sim-
ply immediately start running the next process.
As Erlang processes are not OS level threads
they are more lightweight, which is the main
reason ERTS can run hundreds of thousands of
processes. Erlang processes use a dynamically
allocated stack, that starts off much smaller
than Java threads. By default an Erlang process
will use around 2.5KB[22] on a 64bit machine,
wheres as a Java thread starts off with a 1024KB
stack on a 64bit machine.

There is a library for Java called Quasar,
that tries to bring the same lightweight threads
to the JVM as are Erlang processes. In order
to really pull it off, Quasar needs to instru-
ment your code to save the execution state and
restore it when that lightweight thread starts
running again[23]. Though instrumentation
has many challenges that add complexity to
the program instead of removing it.

The same applies for the JVM actor frame-
work Akka mentioned earlier. They can work
very well, if the programmers take care to fol-
low some principles. As Akka actors run on
OS Threads an actor that randomly blocks will
block the entire thread. Without fundamental
changes in how the JVM works, one cannot
guarantee that an arbitrary piece of code will
not block[24].

5

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

4. Runtime Optimisations

4.1. JIT compiler

When looking at the JVM and comparing it
with other Virtual Machines then we cannot
forget to mention the just-in-tim (JIT) com-
piler that HotSpot has, which has the largest
effect on performance of the JVM[25]. As men-
tioned in the introduction, both Erlang and
Java source code are not directly compiled to
executable binaries or native code. Instead they
rely on the runtime to execute the statements in
the intermediate language (bytecode for java
and so called BEAM code for Erlang).

Purely interpreting commands sequentially
is slower simply because of having to translate
commands over and over again into the ma-
chines native instructions, not to mention vari-
ous optimisations that good compilers do[25].
JIT compiler in the HotSpot works by keeping
track of what methods are "hot" (called often)
and then optimising and compiling them to
native code. This has the benefit that effort is
not spent to compile/optimise methods that
don’t execute or do so rarely.

4.2. HIPE and BEAMJIT

ERTS comes with a ahead-of-time compiler
called HiPE (High Performance Erlang). It is
sometimes called also a just-in-time compiler,
but in reality it’s more of a ahead-of-time com-
piler, because the user has to choose which
functions or modules are compiled into native
code. It doesn’t do it automatically during
runtime for most used functions[26].

Compiling ahead of time also strips away
many possibilities for optimisation that the
HotSpot JIT compiler does. Essentially the
HotSpot JIT compiler is able to gamble the
system into better performance by doing short-
cuts. For example the HotSpot JIT compiler
assumes that a method never throws an excep-
tion or that most methods are not overloaded
and links directly to a specific callsite instead
of traversing the class hierarchy each time to
find the most specific method[25].

These optimisations are possible on the

JVM, because it can keep track of the shortcuts
it has made and if any of them become invalid,
for example a method does throw an excep-
tion, then the JIT compiler will deoptimize the
method and compile it again without the op-
timisation or run it as interpreted. The HiPE
compiler however cannot make such shortcuts,
because it hasn’t got the ability to change gears
during runtime, the once compiled code has to
be correct and work in all circumstances.

However a true just-in-time compiler for
ERTS is in development and called BEAMJIT.
Similarly to the HotSpot JIT compiler it uses
tracing to decide which methods should be
compiled to native code and which not. It has
shown increased performance in some bench-
marks, but the current implementation doesn’t
do any Erlang language specific optimisations,
which leaves out the best part of having a true
just-in-time compiler[27].

5. Summary

As we’ve seen the JVM and ERTS are quite
different underneath. Namely the difference
stems from the fact that Erlang takes the Actor
model as it’s basis and has built it’s runtime
around that. Whether that’s good or bad is
up to debate and most likely depends on the
problem at hand. Java and the JVM provide
enough tools to retrofit any concurrency model
out there, but retrofitting anything won’t be the
same as taking it into the initial design. That
said there’s a wonderful quote from the one of
the creators of Erlang:

"Erlang accidentally has the right
properties to exploit multi-core ar-
chitectures - not by design but by
accident" - Joe Armstrong[16]

References

[1] E. Stenman, “Vm tuning, know your
engine - part ii: the beam.” https://www.
youtube.com/watch?v=RcyN2yS5PRU,
July 2013.

6

https://www.youtube.com/watch?v=RcyN2yS5PRU
https://www.youtube.com/watch?v=RcyN2yS5PRU

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

[2] “Beam file format.” https://synrc.
com/publications/cat/Functional%
20Languages/Erlang/BEAM.pdf, May
2012.

[3] C. Hewitt, P. Bishop, and R. Steiger, “A
universal modular actor formalism for ar-
tificial intelligence,” in Proceedings of the
3rd International Joint Conference on Artifi-
cial Intelligence, IJCAI’73, (San Francisco,
CA, USA), pp. 235–245, Morgan Kauf-
mann Publishers Inc., 1973.

[4] F. Hebert, Learn You Some Erlang for Great
Good!: A Beginner’s Guide. No Starch Press
Series, No Starch Press, 2013.

[5] J. Bloom, “JVM Internals.” http://blog.
jamesdbloom.com/JVMInternals.html,
November 2013.

[6] B. Goetz, “Java theory and practice:
Garbage collection in the HotSpot JVM.”
http://www.ibm.com/developerworks/
library/j-jtp11253/, November 2003.

[7] “Memory Management in the Java
HotSpotTM Virtual Machine,” tech. rep.,
Sun Microsystems, 04 2006.

[8] E. Stenman, “Erlang engine tuning: Part
1 - know your engine.” http://www.
youtube.com/watch?v=QbzH0L_0pxI,
April 2013.

[9] “http://www.erlang.org/.” http://www.
erlang.org/.

[10] E. Johansson, K. Sagonas, and J. Wilhelms-
son, “Heap architectures for concurrent
languages using message passing,” in Pro-
ceedings of the 3rd International Symposium
on Memory Management, ISMM ’02, (New
York, NY, USA), pp. 88–99, ACM, 2002.

[11] S. Akhmechet, “Erlang style concurrency.”
http://www.defmacro.org/ramblings/
concurrency.html, August 2006.

[12] D. V. Subramaniam, “What makes concur-
rency hard,” Healthy Code, July 2014.

[13] J. Armstrong, “Concurrency is
easy.” http://armstrongonsoftware.
blogspot.com/2006/08/
concurrency-is-easy.html, August
2006.

[14] “http://akka.io/.” http://akka.io/.

[15] R. Carlsson, “[erlang-questions] why are
messages between processes copied?.”
http://erlang.org/pipermail/
erlang-questions/2012-February/
064613.html, February 2012.

[16] J. Armstrong, “[erlang-questions] why
are messages between processes copied?.”
http://erlang.org/pipermail/
erlang-questions/2012-February/
064617.html, February 2012.

[17] H. Sutter, “The free lunch is over: A
fundamental turn toward concurrency
in software.” http://www.gotw.ca/
publications/concurrency-ddj.htm,
March 2005.

[18] A. Baumann, S. Peter, A. Schüpbach,
A. Singhania, T. Roscoe, P. Barham, and
R. Isaacs, “Your computer is already
a distributed system. why isn’t your
os?.” https://www.usenix.org/legacy/
event/hotos09/tech/full_papers/
baumann/baumann_html/index.html,
March 2009.

[19] K. Lundin, “Inside the erlang vm.”
http://www.erlang.org/euc/08/euc_
smp.pdf, November 2008.

[20] L. Larsson, “Understanding the er-
lang scheduler.” https://vimeo.com/
86106434, February 2014.

[21] J. L. Andersen, “How er-
lang does scheduling.” http://
jlouisramblings.blogspot.com/2013/
01/how-erlang-does-scheduling.html,
January 2013.

[22] “Efficiency guide 8.1 creation of an erlang
process.” http://www.erlang.org/doc/
efficiency_guide/processes.html.

7

https://synrc.com/publications/cat/Functional%20Languages/Erlang/BEAM.pdf
https://synrc.com/publications/cat/Functional%20Languages/Erlang/BEAM.pdf
https://synrc.com/publications/cat/Functional%20Languages/Erlang/BEAM.pdf
http://blog.jamesdbloom.com/JVMInternals.html
http://blog.jamesdbloom.com/JVMInternals.html
http://www.ibm.com/developerworks/library/j-jtp11253/
http://www.ibm.com/developerworks/library/j-jtp11253/
http://www.youtube.com/watch?v=QbzH0L_0pxI
http://www.youtube.com/watch?v=QbzH0L_0pxI
http://www.erlang.org/
http://www.erlang.org/
http://www.defmacro.org/ramblings/concurrency.html
http://www.defmacro.org/ramblings/concurrency.html
http://armstrongonsoftware.blogspot.com/2006/08/concurrency-is-easy.html
http://armstrongonsoftware.blogspot.com/2006/08/concurrency-is-easy.html
http://armstrongonsoftware.blogspot.com/2006/08/concurrency-is-easy.html
http://akka.io/
http://erlang.org/pipermail/erlang-questions/2012-February/064613.html
http://erlang.org/pipermail/erlang-questions/2012-February/064613.html
http://erlang.org/pipermail/erlang-questions/2012-February/064613.html
http://erlang.org/pipermail/erlang-questions/2012-February/064617.html
http://erlang.org/pipermail/erlang-questions/2012-February/064617.html
http://erlang.org/pipermail/erlang-questions/2012-February/064617.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/baumann/baumann_html/index.html
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/baumann/baumann_html/index.html
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/baumann/baumann_html/index.html
http://www.erlang.org/euc/08/euc_smp.pdf
http://www.erlang.org/euc/08/euc_smp.pdf
https://vimeo.com/86106434
https://vimeo.com/86106434
http://jlouisramblings.blogspot.com/2013/01/how-erlang-does-scheduling.html
http://jlouisramblings.blogspot.com/2013/01/how-erlang-does-scheduling.html
http://jlouisramblings.blogspot.com/2013/01/how-erlang-does-scheduling.html
http://www.erlang.org/doc/efficiency_guide/processes.html
http://www.erlang.org/doc/efficiency_guide/processes.html

Comparison of Erlang Runtime System and Java Virtual Machine • May 2015

[23] R. Pressler, “Jvmls 2014: Lightweight
threads.” http://medianetwork.oracle.
com/video/player/3731008736001, Au-
gust 2014.

[24] C. Moon, “Actors, green threads and csp
on the jvm – no, you can’t have a pony.”
http://www.boundary.com/blog/2014/
09/no-you-cant-have-a-pony/, March
2014.

[25] S. Oaks, Java Performance: The Definitive
Guide. O’Reilly Media, 2014.

[26] K. F. Sagonas, M. Pettersson, R. Carlsson,
P. Gustafsson, and T. Lindahl, “All you
wanted to know about the hipe compiler:
(but might have been afraid to ask).,” in
Erlang Workshop (B. Däcker and T. Arts,
eds.), pp. 36–42, ACM, 2003.

[27] F. Drejhammar and L. Rasmusson,
“Beamjit: A just-in-time compiling runtime
for erlang,” in Proceedings of the Thirteenth
ACM SIGPLAN Workshop on Erlang, Er-
lang ’14, (New York, NY, USA), pp. 61–72,
ACM, 2014.

8

http://medianetwork.oracle.com/video/player/3731008736001
http://medianetwork.oracle.com/video/player/3731008736001
http://www.boundary.com/blog/2014/09/no-you-cant-have-a-pony/
http://www.boundary.com/blog/2014/09/no-you-cant-have-a-pony/

	Introduction
	JVM
	ERTS

	Memory Layout
	JVM
	ERTS

	Parallelism and Concurrency
	Shared state
	Message Passing
	Lightweight threads

	Runtime Optimisations
	JIT compiler
	HIPE and BEAMJIT

	Summary

