|
| |
|
|
A122952
|
|
Decimal expansion of 3*Pi.
|
|
6
|
|
|
|
9, 4, 2, 4, 7, 7, 7, 9, 6, 0, 7, 6, 9, 3, 7, 9, 7, 1, 5, 3, 8, 7, 9, 3, 0, 1, 4, 9, 8, 3, 8, 5, 0, 8, 6, 5, 2, 5, 9, 1, 5, 0, 8, 1, 9, 8, 1, 2, 5, 3, 1, 7, 4, 6, 2, 9, 2, 4, 8, 3, 3, 7, 7, 6, 9, 2, 3, 4, 4, 9, 2, 1, 8, 8, 5, 8, 6, 2, 6, 9, 9, 5, 8, 8, 4, 1, 0, 4, 4, 7, 6, 0, 2, 6, 3, 5, 1, 2, 0, 3, 9, 4, 6, 4, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,1
|
|
|
COMMENTS
|
Area of the unit cycloid with cusp at the origin.
The arc length Integrate {theta=0..2Pi}, Sqrt(2(1-Cos(theta)) d theta = 8.
3*Pi is also the surface area of a sphere whose diameter equals the square root of 3. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
|
|
|
REFERENCES
|
Anton, Bivens & Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY 2002, pg 490.
William H. Beyer, Editor, CRC St'd Math. Tables, 27th Edition, CRC Press, Inc., Boca Raton, FL, 1984, pg 214.
|
|
|
LINKS
|
Table of n, a(n) for n=1..105.
|
|
|
FORMULA
|
The formula for the cycloid parameterically is x = a - Sin(a) and y = 1 - Cos(a).
|
|
|
EXAMPLE
|
= 9.424777960769379715387930149838508652591508198125317462924833776...
|
|
|
MATHEMATICA
|
RealDigits[3Pi, 10, 111][[1]]
|
|
|
CROSSREFS
|
Cf. A000796, A019692, A019694, A019669.
Sequence in context: A091661 A011313 A245298 * A039663 A155535 A099879
Adjacent sequences: A122949 A122950 A122951 * A122953 A122954 A122955
|
|
|
KEYWORD
|
cons,nonn
|
|
|
AUTHOR
|
Robert G. Wilson v, Sep 30 2006
|
|
|
STATUS
|
approved
|
| |
|
|