
Introducing OpenBSD ’s new httpd

Reyk Floeter (reyk@openbsd.org)

March 2015

Abstract

OpenBSD includes a brand new web server that was
started just two weeks before the 5.6[11] release was
finished. Work is in active progress and significant
improvements have been done since its initial ap-
pearance. But why do we need another web server?
This paper is about the history, design and imple-
mentation of the new httpd(8). About 17 years ago,
OpenBSD first imported the Apache[8] web server into
its base system. It got cleaned up and improved and
patched to drop privileges and to chroot itself by de-
fault. But years of struggle with the growing codebase,
upstream, and the inacceptable disaster of Apache 2
left OpenBSD with an unintended fork of the ageing
Apache 1.3.29 for many years. When nginx[10] came
up, it promised a much better alternative of a popular,
modern web server with a suitable BSD license and
a superior design. It was patched to drop privileges
and to chroot itself by default and eventually replaced
Apache as OpenBSD’s default web server. But history
repeated itself: a growing codebase, struggle with up-
stream and the direction of its newly formed commer-
cial entity created a discontent among many develop-
ers. Until one day at OpenBSD’s g2k14 Hackathon in
Slovenia, I experimented with relayd[5] and turned it
into a simple web server. A chain of events that were
supported by Bob Beck and Theo de Raadt turned it
into a serious project that eventually replaced nginx
as the new default. It was quickly adopted by many
users: ”OpenBSD httpd” was born, a simple and se-
cure web server for static files, FastCGI and LibreSSL-
powered TLS. And, of course, ”httpd is web scale”.

1 History

1.1 Introduction

This paper provides a brief description of OpenBSD’s
new httpd(8) web server, including technical back-
ground, history and my personal motivation of
creating it. It is inteded to provide some complemen-
tary information for my talk at AsiaBSDCon 2015 .

In the beginning Theo de Raadt created OpenBSD
and in the early days of the project, the Apache web
server got imported. And Apache was not in a good
shape, and almost void; and it had many dark parts
in the deeps of the source code. And there were some
efforts to clean it up, to bring some light; Henning
Brauer did it, and it was good. And the source code
was divided and much unused code was removed from
the base system. And this new web server became
known as OpenBSD’s Apache, which was different to
but based on Apache 1.3. This is how the first web
server appeared in OpenBSD.

More than 16 years later, OpenBSD’s old web
server, based on Apache 1.3.29, was replaced by a to-
tally new server that was written by Reyk Floeter. But
first Apache had to be removed; a quest that took a
long road. It first appeared in OpenBSD 2.3 of March
1998 and it has been patched and maintained for a long
time. The server got modified with custom changes,
IPv6 support, and all the security enhancements like
chroot and some serious code cleanup. It really fol-
lowed the tradition of being ”a patchy web server”.
But at some point it ended up to be an inefficient

and somewhat ancient design that didn’t match the
standards of modern network daemons in OpenBSD
anymore.

When nginx became more popular, it seemed to
be the perfect replacement: a fast, modern, single-
threaded, and non-blocking server with an async I/O
design, that did FastCGI instead of forking classic CGI
processes or loading all kinds of dangerous modules
into the server itself. And, after all, it came with a
2-clause BSD-like license. It did not provide all the
security improvements, but it got patched to run ch-
root’ed like OpenBSD’s old Apache. nginx was im-
ported into OpenBSD in late 2011 and first appeared
in the 5.1 release in May 2012.

For some time, both web servers existed in
OpenBSD at same time and it took until March 2014
before Apache got finally removed. nginx became the
new default web server in OpenBSD. The delay was
primarily caused by nginx limitation that it did not
support classic CGI. Simple CGI scripts were com-
monly used by sysadmins on their OpenBSD servers,
and even the base system ships with bgplg(8), a CGI-
based looking glass for bgpd(8). Apache could not be
removed before there was a way to run these scripts
with FastCGI under nginx. A FastCGI wrapper in
the base system, slowcgi(8), was implemeted by Flo-
rian Obser and imported in May 2013 to solve the
problem.

nginx’ monocracy didn’t last very long. A series of
events lead to its removal in August 2014. It has been
replaced by a new web server: OpenBSD’s new httpd
by Reyk Floeter; the history and implementation is
described in the following chapters.

The latest history of Apache, nginx, and httpd in
OpenBSD’s base can been summarized by a simple
search in Google. The query for ”nginx openbsd base”
returned the following in the very first results:

1.2 Security Shokunin

The OpenBSD project holds Hackathons at differ-
ent international locations throughout the year. The
largest one is happening once a year, since 1999, and is
attended by most active developers. The 2014 g2k14
general Hackathon was taking place July in Ljubljana,
Slovenia, and attended by 49 developers. These de-
veloper gatherings are used for very active work on
OpenBSD’s source tree: to start new patches and
projects, to finish older ones, and for careful optimiza-
tions. The security and code quality of OpenBSD
is constantly being improved, a continuous effort to
gain perfection that reminds a lot of the Japanese
Shokunin.

OpenBSD had just introduced the new reallocar-
ray(3) function with overflow protection in its C li-
brary and many developers have started to replace
suspicious calls of calloc(3) and malloc(3) in the source
tree. There was also the infamous ”Heartbleed” bug
that lead to OpenBSD’s LibreSSL subproject, forked
from OpenSSL. One major exploit mitigation mitiga-
tion technique of OpenSSL that made every system,
including OpenBSD, vulnerable to the Heartbleed bug
was its obscured memory allocator that silently by-
passed OpenBSD’s malloc protections by preallocat-
ing and reusing large chunks of memory.

Reyk had looked at nginx and wrote a large patch
to replace all risky calls of malloc and calloc with ar-
ray multiplications with reallocarray(3) - or its pre-
decessor mallocarray. It turned out that nginx uses
many calls with the idiom malloc(num * size) and
does not attempt to detect integer overflows; this is
safe as long as the values are small and it is guaran-
teed to not cause any integer overflows. But assump-
tions based on preconditions or non-obvious informa-
tion, some of these values have size limits based on
kernel-reported variables, are very dangerous and can
always lead to mistakes. OpenBSD’s reallocarray(3)
has been designed to check for overflow, and to return
NULL as failure in such a case (Copyright c© 2008
Otto Moerbeek):

#define MUL_NO_OVERFLOW \

(1UL << (sizeof(size_t) * 4))

if ((nmemb >= MUL_NO_OVERFLOW ||

size >= MUL_NO_OVERFLOW) &&

nmemb > 0 && SIZE_MAX / nmemb < size) {

errno = ENOMEM;

return NULL;

}

return realloc(optr, size * nmemb);

The aforementioned patch grew very big and even-
tually got discarded. It would have been very diffi-
cult to maintain it as a custom patch for nginx in
OpenBSD’s source tree, and there was no indication
that upstream would have imported it any time soon

or even at all. But that wasn’t the only aestheti-
cally challenging issue in nginx, it turned out that
nginx uses a number of custom memory allocators
that preallocate and reuse almost all dynamic mem-
ory objects it needs. This reminded too much of the
”Heartbleed” issue and OpenSSL’s custom memory al-
locators that have been ripped out of LibreSSL. Soft-
ware for OpenBSD must use the system’s malloc(3)
routines, and it must not sacrifice security for per-
formance by bypassing all the randomization and the
safety checks of ”Otto Malloc” in libc.

Furthermore, the nginx code base grew larger since
its initial import to OpenBSD in 2011. For good rea-
son, OpenBSD had decided to follow stable nginx re-
leases from upstream and to apply its local patches,
like chroot, that did not make it back up. This
work had its challenges and repeatedly reapplying the
patches made it difficult to maintain. The nginx code
base has many files and ever-increasing features, that
might or might not matter for OpenBSD. The review
of the code base revealed that it uses just too much
code: custom reimplementations of standard C library
functions, many layers, modules and even a local copy
of the PCRE library for extended regular expressions.

In June 2013, long before the g2k14 Hackathon,
Reyk had disabled the SPDY module that is included
in nginx and enabled by default. That was a very
controversial move that even raised dissent between
senior developers in OpenBSD. ”Is there a reason to
believe this specific piece of code is worse than any
other?”. There was no evidence - just the firm be-
lieve that Security’s worst enemy is complexity and
that too much code is always a potential risk. Addi-
tionally, SPDY got turned off because nobody in the
OpenBSD project itself had spent time reviewing and
understanding the protocol at this point. About a year
later, this move has saved OpenBSD from two major
security vulnerabilities in nginx: ”SPDY heap buffer
overflow”[1] and ”SPDY memory corruption”[2].

1.3 OpenBSD’s new httpd

There is a purely technical decision that lead to the
creation of httpd, but there is also an anecdote about
the motivation that kick-started the project.

After being frustrated about the impossibility to
make larger changes in nginx, and the general direc-
tion of upstream and its associated company, Reyk
tried to find an alternative. He is the main author
and maintainer of relayd(8), OpenBSD’s load bal-
ancer, and knew that it basically implements a highly-
scalable HTTP engine. So while still being at the
g2k14 Hackathon, he started one day in the after-
noon experimenting with relayd to turn it into a sim-
ple chroot’ed web server that serves static files. A
few hours later, the relayd-based server, conveniently
called httpd, was able to serve a local copy of the

OpenBSD web site.

At the same day, Reyk demonstrated the server ex-
periment to Theo de Raadt and Bob Beck who sat
and worked in the same ”Hackroom” of the event.
To the initial surprise of the author, they quickly got
convinced about the attempt, and encouraged Reyk
to import httpd into OpenBSD’s source tree. Un-
linked from the builds, but as visible part in the CVS
repository. It was already a fairly late time of the
day, and the developers had started drinking some
sensible amounts of beer, when httpd was committed
to OpenBSD. One day later, the developer wrote on
Twitter: ”Today I woke up with sorrow and realized
that I committed a web server last night”[6].

It only took two more weeks, before httpd was linked
to the builds, the OpenBSD 5.6 release was tagged
and eventually shipped with the initial version of the
new httpd. Many developers had contributed code,
most notably Florian Obser for his implementation of
FastCGI and Joel Sing for SSL/TLS. The 5.6 version
of httpd was provided ”as is”, but fully functional as
a basic web server that is secure, serves static files and
supports FastCGI and TLS.

2 Design & Implementation

The design of httpd(8) is significantly influenced by
its ancestor relayd(8): it inherited large parts of the
code. It is a privilege-separated daemon, using proc.c

and the imsg framework that is using async I/O with
OpenBSD’S libevent. The web server is written with
care and it is not obfuscated to shrink the size; but
it consists of roughly 10,000 lines of code (relayd has
about 24,000 lines of code).

The main development of the implementation hap-
pens in OpenBSD and the project’s CVS repository.
Occasionally, a mirror of the source code is pushed to
the httpd repository on GitHub[7].

2.1 Simplicity

httpd(8) is designed to be a simple web server that
performs some basic but yet powerful tasks. By de-
sign, it is intended to only support a selection of ”core”
features that are required for common, modern web
applications. It shall not support special features and
a major design objective is to keep it resonably small.
Something is very unique to httpd: it uses a Featuritis
label in its issue tracker to track rejected features[4] -
and to remind everyone about the reasons later. Many
feature requests have already been rejected because
they would exceed the current scope or violate its sim-
plicity.

Simplicity also means that it should be easy to use
and provide a human-readble configuration file with
sane defaults. httpd.conf is easy to use and a basic

web server configuration just needs 3 lines of configu-
ration:

server "www.example.com" {

listen on * port 80

}

2.2 Features

”Features” became a very negative word, as it indi-
cates a need to have many of them. It is almost ex-
pected that new software releases introduce a new set
of features. Developers add features, just to add new
features and users demand new features, just have new
features. It actually became very untypical to avoid
features and to avoid Featuritis.

For httpd, it is more important what ”core” func-
tionality it needs, and what features it should not
have. It is an ongoing struggle with users who want
more features because only a few of them make it to
the list. And, who knows, some of the existing features
might be removed when they turn out to be unneces-
sary.

The following ”core” functionality and concepts are
currently supported and characterize the implementa-
tion:

Static files The main purpose is to serve static files
and directories via optional auto-indexing. If auto-
indexing is enabled, the directories are returned as
HTML lists.

FastCGI The protocol provides the single and fast
interface to serve dynamic content as an alternative
to CGI or any other embedded scripting or CGI-
like mechanism. It supports asynchronous and direct
FastCGI via UNIX socket or TCP/IP.

Secure Non-optional security by running chroot’ed
and with privilege separation by default.

TLS Supports secure connections via TLS powered
by LibreSSL and the libtls API. The TLS stack uses
state-of-the-art security standards and disables inse-
cure or outdated SSL/TLS features.

Virtual servers Flexible configuration with support
for name- and IP-based virtual servers on IPv4 and
IPv6.

Reconfiguration The running configuration can be
changed and reloaded without interruption or the need
to restart the server.

Logging Supports per-server logging via local access
and error files. Alternatively, logging via syslog is sup-
ported by default.

Blocking Blocking, dropping and redirections are re-
quired to prevent unauthorized access to subdirecto-
ries and to redirect to alternate URLs.

2.3 Security

OpenBSD runs its web servers in a chroot for many
years; Apache and nginx have been patched to run
chroot’ed by default. These patches have never been
accepted by upstream, but yet they provide a signifi-
cant benefit.

The world was shocked when the “shellshock”[13]
vulnerability was discovered in 2014. While the vul-
nerbility itself was related to a bug in the GNU bash
command line shell, the impact could have been miti-
gated by limiting the file system access of the affected
web applications and servers. And web server should
not be able to read raw database files, password files,
or credentials from the file system - especially not as
root. Shellshock exposed all kinds of problems that
raised the questions like: “Why does a web application
of a multi-million dollar company execute privileged
bash commands with full access to the file system?”.

httpd(8) has been designed to run chroot’ed by de-
fault. It cannot be turned off, the web server uses priv-
ilege separation to fork different processes, including
the “parent”, “logger” and “server” processes. The
server is the only privileged process that is running
as root, the logger serializes log messages and writes
them to the log files and the server processes accept
and handle HTTP requests and FastCGI. All processes
except the parent jail themselves to a chroot, typically
to /var/www. Messaging between the processes is done
with imsg.

The server is implemented with intensive peer re-
view, following OpenBSD’s coding practices, and uses
style(9) aka. KNF. It implements file descriptor ac-
counting to prevent starvation under heavy load and
DoS.

2.4 TLS with LibreSSL

The OpenBSD project forked the LibreSSL SSL/TLS
and crypto stack from OpenSSL in response to the
Heartbleed vulnerability in its ancestor. The project
was started with goals of modernizing the codebase,
improving security, and applying best practice devel-
opment processes.

As with any other portable project that originated
from OpenBSD, primary development occurs in the
OpenBSD source tree and portable version for various
other operating systems like Linux, FreeBSD, Solaris,
and Windows are regularly packaged based on this ver-
sion.

httpd(8) uses LibreSSL’s new libtls API that is pro-
vided as an alternative to the traditional libssl API
from OpenSSL. It is designed to provide a simple and
well-designed API that makes it easier and more se-
cure to write TLS clients and servers. It is imple-
mented on top of libssl and libcrypto without expos-
ing the details of the underlying OpenSSL API; the
backend library could even be replaced in the future.

The httpd(8) web server was used as a reference im-
plementation for the server API, which was designed
and written by Joel Sing with input from Ted Unangst,
and Reyk Floeter. The client-side of the API was
designed by replacing the libssl code in OpenBSD’s
ftp(1) tool. As httpd(8) was originally based on
OpenBSD’s relayd(8), some of it’s SSL/TLS code was
used as a reference for the implementation in libtls.

2.5 FastCGI

FastCGI is crucial to serve dynamic content, it is
httpd’s fast interface to run web applications, Apps,
and to make it ”web scale”. It was initially designed to
overcome the CGI protocol’s scalability and resource
sharing limitations. While CGI scripts need to be
forked for every request, FastCGI scripts can be kept
running and handle many HTTP requests. CGI is not
directly supported by httpd.

The FastCGI implementation was written by Flo-
rian Obser and is based on his slowcgi server. slowcgi
is a simple server that translates FastCGI requests to
the CGI protocol; it runs chroot’ed and executes the
requested CGI script, and translates its output back
to the FastCGI protocol. The FastCGI implemen-
tation in httpd takes the HTTP requests, encapsu-
lates them in FastCGI requests, and sends them to a
FastCGI server such as slowcgi. The protocol itself is
an open specification that is frame-based and allows to
exchange encapsulated parameters and stdin/stdout
payload between web- and fastcgi server.

When Reyk Floeter asked Florian Obser about his
motivation to write slowcgi and httpd, he answered
with the following statements:

”I implemented slowcgi because you didn’t
stop whining on icb that nginx can’t execute
bgplg”. And ”fastcgi in httpd: (Bob) Beck
has asked me if I can help you with it”.

3 Configuration

The httpd.conf configuration file is using OpenBSD’s
modern style of a sane configuration language, that
attempts to be flexible and humand-readable. It does
not use a markup with semicola or tags, just english
keywords and blocks identified by curly braces (“{}”).
This is commonly called the parse.y-based configura-
tion within OpenBSD, because it originates from the
grammar and parser that was written for pf.

Within the configuration file there are four main sec-
tions: Macros (user-defined variables that may be de-
fined and used later, simplifying the configuration file),
Global Configuration (global settings for httpd(8)),
Servers (Listening HTTP web servers), and Types
(Media types and extensions).

Within the sections, a host address can be specified
by IPv4 address, IPv6 address, interface name, inter-
face group, or DNS hostname. If the address is an
interface name, httpd(8) will look up the first IPv4
address and any other IPv4 and IPv6 addresses of the
specified network interface. If ‘*’ is given as an ad-
dress, it will be used as an alias for 0.0.0.0 to listen
on all IPv4 addresses. Likewise, ‘::’ can be used to
listen on all IPv6 addresses. A port can be speci-
fied by number or name; with names according to the
/etc/services file.

The current line can be extended over multiple lines
using a backslash. Comments can be put anywhere in
the file using a hash mark (“#”), and extend to the
end of the current line. Care should be taken when
commenting out multi-line text: the comment is effec-
tive until the end of the entire block.

Argument names not beginning with a letter, digit,
or underscore must be quoted. Additional configura-
tion files can be included with the include keyword,
for example:

include "/etc/httpd.conf.local"

3.1 Macros

As in all of OpenBSD’s parse.y-based configuration
files, macros can be defined that will later be expanded
in context. Macro names must start with a letter,
digit, or underscore, and may contain any of those
characters. Macro names may not be reserved words
(for example, directory, log, or root). Macros are not
expanded inside quotes. For example:

ext_ip="10.0.0.1"

server "default" {

listen on $ext_ip port 80

}

3.2 Global Configuration

The global configuration can be set to set defaults or
to modify the runtime. Most of the global settings

cannot be changed on configuration reload.

chroot directory Set the chroot(2) directory. If not
specified, it defaults to /var/www, the home directory
of the www user.

logdir directory Specifies the full path of the direc-
tory in which log files will be written. If not specified,
it defaults to /logs within the chroot(2) directory.

prefork number Run the specified number of server
processes. This increases the performance and pre-
vents delays when connecting to a server. httpd(8)
runs 3 server processes by default.

3.3 Servers

The servers are specified as configuration blocks,
marked by the ”server” keyword, a name, and the ac-
tual server configuration encapsulated in curly braces
(”{}”).

alias name Specify an additional alias name for this
server.

[no] authenticate [realm] with htpasswd Authen-
ticate a remote user for realm by checking the cre-
dentials against the user authentication file htpasswd.
The file name is relative to the chroot and must be
readable by the www user. Use the no authenticate
directive to disable authentication in a location.

block drop Drop the connection without sending an
error page.

block [return code [uri]] Close the connection and
send an error page. If the optional return code is not
specified, httpd(8) denies access with a ‘403 Forbid-
den’ response. The optional uri argument can be used
with return codes in the 3xx range to send a ‘Loca-
tion:’ header for redirection to a specified URI.

The url may contain predefined macros that will be
expanded at runtime:

• $DOCUMENT URI The request path.

• $QUERY STRING Optional query string.

• $REMOTE ADDR Remote IP address.

• $REMOTE PORT Remote TCP source port.

• $REMOTE USER Authenticated HTTP user.

• $REQUEST URI Request path and optional
query string.

• $SERVER ADDR Server IP address.

• $SERVER PORT Server TCP server port.

• $SERVER NAME Server name.

connection option Set the specified options and lim-
its for HTTP connections. Valid options are:

• max request body number Set the maximum
body size in bytes that the client can send to the
server. The default value is 1048576 bytes (1M).

• max requests number Set the maximum num-
ber of requests per persistent HTTP connection.
Persistent connections are negotiated using the
Keep-Alive header in HTTP/1.0 and enabled by
default in HTTP/1.1. The default maximum
number of requests per connection is 100.

• timeout seconds Specify the inactivity time-
out in seconds for accepted sessions. The default
timeout is 600 seconds (10 minutes). The maxi-
mum is 2147483647 seconds (68 years).

directory option Set the specified options when serv-
ing or accessing directories. Valid options are:

• [no] auto index If no index file is found, au-
tomatically generate a directory listing. This is
disabled by default.

• index string Set the directory index file. If not
specified, it defaults to index.html.

• no index Disable the directory index. httpd(8)
will neither display nor generate a directory in-
dex.

[no] fastcgi [socket socket] Enable FastCGI instead
of serving files. The socket is a local path name within
the chroot(2) root directory of httpd(8) and defaults
to /run/slowcgi.sock.

listen on address [tls] port number Set the listen
address and port. This statement can be specified
multiple times.

location path {...} Specify server configuration rules
for a specific location. The path argument will be
matched against the request path with shell globbing
rules. A location section may include most of the
server configuration rules except connection, listen on,
location and tcp.

[no] log [option] Set the specified logging options.
Logging is enabled by default using the standard ac-
cess and error log files, but can be changed per server
or location. Use the no log directive to disable logging
of any requests. Valid options are:

• access name Set the name of the access log file
relative to the log directory. If not specified, it
defaults to access.log.

• error name Set the name of the error log file
relative to the log directory. If not specified, it
defaults to error.log.

• style style Set the logging style. The style can
be common, combined or connection. The styles
common and combined write a log entry after
each request similar to the standard Apache and
nginx access log formats. The style connection
writes a summarized log entry after each connec-
tion, that can have multiple requests, similar to
the format that is used by relayd(8). If not spec-
ified, the default is common.

• [no] syslog Enable or disable logging to syslog(3)
instead of the log files.

pass Disable any previous block in a location.

root option Configure the document root and op-
tions for the request path. Valid options are:

• directory Set the document root of the server.
The directory is a pathname within the chroot(2)
root directory of httpd. If not specified, it de-
faults to /htdocs.

• strip number Strip number path components
from the beginning of the request path before
looking up the stripped-down path at the doc-
ument root.

tcp option Enable or disable the specified TCP/IP
options; see tcp(4) and ip(4) for more information
about the options. Valid options are:

• backlog number Set the maximum length the
queue of pending connections may grow to. The
backlog option is 10 by default and is limited by
the kern.somaxconn sysctl(8) variable.

• ip minttl number This option for the underly-
ing IP connection may be used to discard packets
with a TTL lower than the specified value. This
can be used to implement the Generalized TTL
Security Mechanism (GTSM) according to RFC
5082.

• ip ttl number Change the default time-to-live
value in the IP headers.

• [no] nodelay Enable the TCP NODELAY op-
tion for this connection. This is recommended to
avoid delays in the data stream.

• [no] sack Use selective acknowledgements for this
connection.

• socket buffer number Set the socket-level
buffer size for input and output for this connec-
tion. This will affect the TCP window size.

tls option Set the TLS configuration for the server.
These options are only used if TLS has been enabled
via the listen directive. Valid options are:

• certificate file Specify the certificate to use for
this server. The file should contain a PEM en-
coded certificate.

• ciphers string Specify the TLS cipher string. If
not specified, the default value ”HIGH:!aNULL”
will be used (strong crypto cipher suites with-
out anonymous DH). See the CIPHERS section
of openssl(1) for information about SSL/TLS ci-
pher suites and preference lists.

• dhe params Specify the DHE parameters to use
for DHE cipher suites. Valid parameter values
are none, legacy and auto. For legacy a fixed
key length of 1024 bits is used, whereas for auto
the key length is determined automatically. The
default is none, which disables DHE cipher suites.

• ecdhe curve Specify the ECDHE curve to use
for ECDHE cipher suites. Valid parameter values
are none, auto and the short name of any known
curve. The default is auto.

• key file Specify the private key to use for this
server. The file should contain a PEM encoded
private key and reside outside of the chroot(2)
root directory of httpd.

• protocols string Specify the TLS protocols to
enable for this server. If not specified, the default
value ”all” will be used (all available protocols).
Refer to the tls config parse protocols(3) function
for other valid protocol string values.

3.4 Types

Configure the supported media types. httpd(8) will
set the Content-Type of the response header based on
the file extension listed in the types section. If not
specified, httpd(8) will use built-in media types for
text/css, text/html, text/plain, image/gif, image/png,
image/jpeg, and application/javascript.

The types section must include one or more lines of
the following syntax:

type/subtype name [name ...] Set the media type
and subtype to the specified extension name. One or
more names can be specified per line. Each line may
end with an optional semicolon.

include file Include types definitions from an exter-
nal file, for example /usr/share/misc/mime.types.

3.5 Example

All of the previous configuration options can be
used to create amazingly obvious configuration files.
httpd(8) does not install a long default configuration
file, the minimal file only needs 3 lines (as illustrated
previously) and all the defaults are built-in. The fol-
lowing advanced example include some additional di-
rectives:

server "www.example.com" {

listen on * port 80

listen on * tls port 443

Logging is enabled by default

#no log

location "/download/*" {

directory auto index

log style combined

}

location "/pub/*" {

block return 301 \

"http://ftp.example.com/\

$REQUEST_URI"

}

location "*.php" {

fastcgi socket \

"/run/php-fpm.sock"

}

location "/cgi-bin/*" {

fastcgi

root "/"

}

root "/htdocs/www.example.com"

}

4 Conclusion

httpd has been implemented very quickly, it only took
two weeks for OpenBSD 5.6 and an additional release
cycle of about 4 months for the upcoming 5.7 release,
and it became a serious web server and worthy re-
placement for OpenBSD’s nginx/Apache. Many users
have already started to use it, and the community has
accepted it very well. It will take many more years,
maybe forever, to make it perfect, but part of this
effort will include removal and renewal of code.

5 Appendix

5.1 About the Author

Reyk Floeter is the founder of Esdenera Networks
GmbH[3], a company that develops OpenBSD-based
networking and security products for cloud-based
and software-defined networks. For more than ten

years, he gained experience in creating and commer-
cially supporting enterprise-class products based on
OpenBSD, like most recently the Esdenera Firewall.
Reyk is located in Hannover, Germany, but works
with international customers like Internet Initiative
Japan Inc. (IIJ) in Tokyo[9]. He is the author of
the popular relayd load balancer and a hacker in the
OpenBSD[12] project, where he contributed various
features, fixes, networking drivers and daemons since
2004, like OpenBSD’s ath, trunk (a.k.a. lagg), vic,
hostapd, relayd, snmpd, iked, and httpd.

References

[1] Maxim Dounin, ”SPDY heap buffer overflow”,
nginx security advisory (CVE-2014-0133),
http://mailman.nginx.org/pipermail/

nginx-announce/2014/000135.html?_ga=1.

137394864.1013509854.1363164706.

[2] , ”SPDY memory corruption”, ng-
inx security advisory (CVE-2014-0088),
http://mailman.nginx.org/pipermail/

nginx-announce/2014/000132.html?_ga=1.

169007649.1013509854.1363164706.

[3] Esdenera, Esdenera Networks GmbH, http://

www.esdenera.com/.

[4] Reyk Floeter, httpd Issue Tracker, https:

//github.com/reyk/httpd/issues?q=label%

3Afeaturitis+.

[5] , relayd, http://bsd.plumbing/.

[6] , reykfloeter@ ”I committed a web
server last night”, https://twitter.com/

reykfloeter/status/488262609981145088.

[7] , reyk/httpd at GitHub, https://github.
com/reyk/httpd.

[8] The Apache Software Foundation, The Apache
HTTP Server Project, http://httpd.apache.

org/.

[9] IIJ, Internet Initiative Japan Inc., http://www.
iij.ad.jp/.

[10] Nginx Inc., NGINX, http://nginx.com/.

[11] OpenBSD, OpenBSD 5.6, http://www.openbsd.
org/56.html.

[12] , The OpenBSD Project, http://www.

openbsd.org/.

[13] Florian Weimer, ”shellshock”, CVE-2014-6271:
remote code execution through bash, http://

seclists.org/oss-sec/2014/q3/649.

http://mailman.nginx.org/pipermail/nginx-announce/2014/000135.html?_ga=1.137394864.1013509854.1363164706
http://mailman.nginx.org/pipermail/nginx-announce/2014/000135.html?_ga=1.137394864.1013509854.1363164706
http://mailman.nginx.org/pipermail/nginx-announce/2014/000135.html?_ga=1.137394864.1013509854.1363164706
http://mailman.nginx.org/pipermail/nginx-announce/2014/000132.html?_ga=1.169007649.1013509854.1363164706
http://mailman.nginx.org/pipermail/nginx-announce/2014/000132.html?_ga=1.169007649.1013509854.1363164706
http://mailman.nginx.org/pipermail/nginx-announce/2014/000132.html?_ga=1.169007649.1013509854.1363164706
http://www.esdenera.com/
http://www.esdenera.com/
https://github.com/reyk/httpd/issues?q=label%3Afeaturitis+
https://github.com/reyk/httpd/issues?q=label%3Afeaturitis+
https://github.com/reyk/httpd/issues?q=label%3Afeaturitis+
http://bsd.plumbing/
https://twitter.com/reykfloeter/status/488262609981145088
https://twitter.com/reykfloeter/status/488262609981145088
https://github.com/reyk/httpd
https://github.com/reyk/httpd
http://httpd.apache.org/
http://httpd.apache.org/
http://www.iij.ad.jp/
http://www.iij.ad.jp/
http://nginx.com/
http://www.openbsd.org/56.html
http://www.openbsd.org/56.html
http://www.openbsd.org/
http://www.openbsd.org/
http://seclists.org/oss-sec/2014/q3/649
http://seclists.org/oss-sec/2014/q3/649

	History
	Introduction
	Security Shokunin
	OpenBSD's new httpd

	Design & Implementation
	Simplicity
	Features
	Static files
	FastCGI
	Secure
	TLS
	Virtual servers
	Reconfiguration
	Logging
	Blocking

	Security
	TLS with LibreSSL
	FastCGI

	Configuration
	Macros
	Global Configuration
	chroot directory
	logdir directory
	prefork number

	Servers
	alias name
	[no] authenticate [realm] with htpasswd
	block drop
	block [return code [uri]]
	connection option
	directory option
	[no] fastcgi [socket socket]
	listen on address [tls] port number
	location path {...}
	[no] log [option]
	pass
	root option
	tcp option
	tls option

	Types
	type/subtype name [name ...]
	include file

	Example

	Conclusion
	Appendix
	About the Author

