
Machine Learning:
The High-Interest Credit Card of Technical Debt

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov,
Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young

{dsculley,gholt,dgg,edavydov}@google.com
{toddphillips,ebner,vchaudhary,mwyoung}@google.com

Google, Inc

Abstract

Machine learning offers a fantastically powerful toolkit for building complex sys-
tems quickly. This paper argues that it is dangerous to thinkof these quick wins
as coming for free. Using the framework oftechnical debt, we note that it is re-
markably easy to incur massive ongoing maintenance costs atthe system level
when applying machine learning. The goal of this paper is highlight several ma-
chine learning specific risk factors and design patterns to be avoided or refactored
where possible. These include boundary erosion, entanglement, hidden feedback
loops, undeclared consumers, data dependencies, changes in the external world,
and a variety of system-level anti-patterns.

1 Machine Learning and Complex Systems

Real world software engineers are often faced with the challenge of moving quickly to ship new
products or services, which can lead to a dilemma between speed of execution and quality of en-
gineering. The concept oftechnical debtwas first introduced by Ward Cunningham in 1992 as a
way to help quantify the cost of such decisions. Like incurring fiscal debt, there are often sound
strategic reasons to take on technical debt. Not all debt is necessarily bad, but technical debt does
tend to compound. Deferring the work to pay it off results in increasing costs, system brittleness,
and reduced rates of innovation.

Traditional methods of paying off technical debt include refactoring, increasing coverage of unit
tests, deleting dead code, reducing dependencies, tightening APIs, and improving documentation
[4]. The goal of these activities isnot to add new functionality, but to make it easier to add future
improvements, be cheaper to maintain, and reduce the likelihood of bugs.

One of the basic arguments in this paper is that machine learning packages have all the basic code
complexity issues as normal code, but also have a larger system-level complexity that can create
hidden debt. Thus, refactoring these libraries, adding better unit tests, and associated activity is time
well spent but does not necessarily address debt at a systemslevel.

In this paper, we focus on the system-level interaction between machine learning code and larger sys-
tems as an area where hidden technical debt may rapidly accumulate. At a system-level, a machine
learning model may subtly erode abstraction boundaries. Itmay be tempting to re-use input sig-
nals in ways that create unintended tight coupling of otherwise disjoint systems. Machine learning
packages may often be treated as black boxes, resulting in large masses of “glue code” or calibra-
tion layers that can lock in assumptions. Changes in the external world may make models or input
signals change behavior in unintended ways, ratcheting up maintenance cost and the burden of any
debt. Even monitoring that the system as a whole is operatingas intended may be difficult without
careful design.

1

Indeed, a remarkable portion of real-world “machine learning” work is devoted to tackling issues
of this form. Paying down technical debt may initially appear less glamorous than research results
usually reported in academic ML conferences. But it is critical for long-term system health and
enables algorithmic advances and other cutting-edge improvements.

2 Complex Models Erode Boundaries

Traditional software engineering practice has shown that strong abstraction boundaries using en-
capsulation and modular design help create maintainable code in which it is easy to make isolated
changes and improvements. Strict abstraction boundaries help express the invariants and logical
consistency of the information inputs and outputs from an given component [4].

Unfortunately, it is difficult to enforce strict abstraction boundaries for machine learning systems
by requiring these systems to adhere to specific intended behavior. Indeed, arguably the most im-
portant reason for using a machine learning system is precisely thatthe desired behavior cannot be
effectively implemented in software logic without dependency on external data. There is little way to
separate abstract behavioral invariants from quirks of data. The resulting erosion of boundaries can
cause significant increases in technical debt. In this section we look at several issues of this form.

2.1 Entanglement

From a high level perspective, a machine learning package isa tool for mixing data sources together.
That is, machine learning models are machines for creating entanglement and making the isolation
of improvements effectively impossible.

To make this concrete, imagine we have a system that uses featuresx1, ...xn in a model. If we
change the input distribution of values inx1, the importance, weights, or use of the remainingn− 1
features may all change—this is true whether the model is retrained fully in a batch style or allowed
to adapt in an online fashion. Adding a new featurexn+1 can cause similar changes, as can removing
any featurexj . No inputs are ever really independent. We refer to this hereas the CACE principle:
Changing Anything Changes Everything.

The net result of such changes is that prediction behavior may alter, either subtly or dramatically,
on various slices of the distribution. The same principle applies to hyper-parameters. Changes in
regularization strength, learning settings, sampling methods in training, convergence thresholds, and
essentially every other possible tweak can have similarly wide ranging effects.

One possible mitigation strategy is to isolate models and serve ensembles. This approach is useful
in situations such as [8], in which sub-problems decompose naturally, or in which the cost of main-
taining separate models is outweighed by the benefits of enforced modularity. However, in many
large-scale settings such a strategy may prove unscalable.And within a given model, the issues of
entanglement may still be present.

A second possible mitigation strategy is to develop methodsof gaining deep insights into the be-
havior of model predictions. One such method was proposed in[6], in which a high-dimensional
visualization tool was used to allow researchers to quicklysee effects across many dimensions and
slicings. Metrics that operate on a slice-by-slice basis may also be extremely useful.

A third possibility is to attempt to use more sophisticated regularization methods to enforce that any
changes in prediction performance carry a cost in the objective function used in training [5]. Like
any other regularization approach, this kind of approach can be useful but is far from a guarantee and
may add more debt via increased system complexity than is reduced via decreased entanglement.

The above mitigation strategies may help, but this issue of entanglement is in some sense innate to
machine learning, regardless of the particular learning algorithm being used. In practice, this all too
often means that shipping the first version of a machine learning system is easy, but that making
subsequent improvements is unexpectedly difficult. This consideration should be weighed carefully
against deadline pressures for version 1.0 of any ML system.

2

2.2 Hidden Feedback Loops

Another worry for real-world systems lies in hidden feedback loops. Systems that learn from world
behavior are clearly intended to be part of a feedback loop. For example, a system for predicting the
click through rate (CTR) of news headlines on a website likely relies on user clicks as training labels,
which in turn depend on previous predictions from the model.This leads to issues in analyzing
system performance, but these are the obvious kinds of statistical challenges that machine learning
researchers may find natural to investigate [2].

As an example of ahiddenloop, now imagine that one of the input features used in this CTR model
is a featurexweek that reports how many news headlines the given user has clicked on in the past
week. If the CTR model is improved, it is likely that all usersare given better recommendations and
many users will click on more headlines. However, the resultof this effect may not fully surface for
at least a week, as thexweek feature adjusts. Furthermore, if the model is updated on thenew data,
either in batch mode at a later time or in streaming fashion with online updates, the model may later
adjust its opinion of thexweek feature in response. In such a setting, the system will slowly change
behavior, potentially over a time scale much longer than a week. Gradual changes not visible in
quick experiments make analyzing the effect of proposed changes extremely difficult, and add cost
to even simple improvements.

We recommend looking carefully for hidden feedback loops and removing them whenever feasible.

2.3 Undeclared Consumers

Oftentimes, a prediction from a machine learning modelA is made accessible to a wide variety
of systems, either at runtime or by writing to logs that may later be consumed by other systems.
In more classical software engineering, these issues are referred to as visibility debt [7]. Without
access controls, it is possible for some of these consumers to beundeclaredconsumers, consuming
the output of a given prediction model as an input to another component of the system. Undeclared
consumers are expensive at best and dangerous at worst.

The expense of undeclared consumers is drawn from the suddentight coupling of modelA to other
parts of the stack. Changes toA will very likely impact these other parts, sometimes in waysthat are
unintended, poorly understood, or detrimental. In practice, this has the effect of making it difficult
and expensive to make any changes toA at all.

The danger of undeclared consumers is that they may introduce additional hidden feedback loops.
Imagine in our news headline CTR prediction system that there is another component of the system
in charge of “intelligently” determining the size of the font used for the headline. If this font-size
module starts consuming CTR as an input signal, and font-size has an effect on user propensity to
click, then the inclusion of CTR in font-size adds a new hidden feedback loop. It’s easy to imagine
a case where such a system would gradually and endlessly increase the size of all headlines.

Undeclared consumers may be difficult to detect unless the system is specifically designed to guard
against this case. In the absence of barriers, engineers maynaturally grab for the most convenient
signal, especially when there are deadline pressures.

3 Data Dependencies Cost More than Code Dependencies

In [7], dependency debtis noted as a key contributor to code complexity and technical debt in
classical software engineering settings. We argue here that data dependenciesin machine learning
systems carry a similar capacity for building debt. Furthermore, while code dependencies can be
relatively easy to identify via static analysis, linkage graphs, and the like, it is far less common that
data dependencies have similar analysis tools. Thus, it canbe inappropriately easy to build large
data-dependency chains that can be difficult to untangle.

3.1 Unstable Data Dependencies

To move quickly, it is often convenient to consume signals asinput features that are produced by
other systems. However, some input signals areunstable, meaning that they qualitatively change

3

behavior over time. This can happen implicitly, when the input signal comes from another machine
learning model itself that updates over time, or a data-dependent lookup table, such as for computing
TF/IDF scores or semantic mappings. It can also happen explicitly, when the engineering ownership
of the input signal is separate from the engineering ownership of the model that consumes it. In such
cases, changes and improvements to the input signal may be regularly rolled out, without regard
for how the machine learning system may be affected. As notedabove in the CACE principle,
“improvements” to input signals may have arbitrary, sometimes deleterious, effects that are costly
to diagnose and address.

One common mitigation strategy for unstable data dependencies is to create aversioned copyof a
given signal. For example, rather than allowing a semantic mapping of words to topic clusters to
change over time, it might be reasonable to create a frozen version of this mapping and use it until
such a time as an updated version has been fully vetted. Versioning carries its own costs, however,
such as potential staleness. And the requirement to maintain multiple versions of the same signal
over time is a contributor to technical debt in its own right.

3.2 Underutilized Data Dependencies

In code, underutilized dependencies are packages that are mostly unneeded [7]. Similarly, under-
utilized data dependencies include input features or signals that provide little incremental value in
terms of accuracy. Underutilized dependencies are costly,since they make the system unnecessarily
vulnerable to changes.

Underutilized dependencies can creep into a machine learning model in several ways.

Legacy Features.The most common is that a featureF is included in a model early in its develop-
ment. As time goes on, other features are added that makeF mostly or entirely redundant, but this
is not detected.

Bundled Features.Sometimes, a group of features is evaluated and found to be beneficial. Because
of deadline pressures or similar effects, all the features in the bundle are added to the model together.
This form of process can hide features that add little or no value.

ǫ-Features. As machine learning researchers, it is satisfying to improve model accuracy. It can be
tempting to add a new feature to a model that improves accuracy, even when the accuracy gain is
very small or when the complexity overhead might be high.

In all these cases, features could be removed from the model with little or no loss in accuracy. But
because they are still present, the model will likely assignthem some weight, and the system is
therefore vulnerable, sometimes catastrophically so, to changes in these unnecessary features.

As an example, suppose that after a team merger, to ease the transition from an old product number-
ing scheme to new product numbers, both schemes are left in the system as features. New products
get only a new number, but old products may have both. The machine learning algorithm knows
of no reason to reduce its reliance on the old numbers. A year later, someone acting with good
intent cleans up the code that stops populating the databasewith the old numbers. This change goes
undetected by regression tests because no one else is using them any more. This will not be a good
day for the maintainers of the machine learning system.

A common mitigation strategy for under-utilized dependencies is to regularly evaluate the effect
of removing individual features from a given model and act onthis information whenever possi-
ble. More broadly, it may be important to build cultural awareness about the long-term benefit of
underutilized dependency cleanup.

3.3 Static Analysis of Data Dependencies

One of the key issues in data dependency debt is the difficultyof performing static analysis. While
compilers and build systems typically provide such functionality for code, data dependencies may
require additional tooling to track. Without this, it can bedifficult to manually track the use of
data in a system. On teams with many engineers, or if there aremultiple interacting teams, not
everyone knows the status of every single feature, and it canbe difficult for any individual human
to know every last place where the feature was used. For example, suppose that the version of a

4

dictionary must be changed; in a large company, it may not be easy even to find all the consumers
of the dictionary. Or suppose that for efficiency a particular signal will no longer be computed; are
all former consumers of the signal done with it? Even if thereare no references to it in the current
version of the codebase, are there still production instances with older binaries that use it? Making
changes safely can be difficult without automatic tooling.

A remarkably useful automated feature management tool was described in [6], which enables data
sources and features to be annotated. Automated checks can then be run to ensure that all depen-
dencies have the appropriate annotations, and dependency trees can be fully resolved. Since its
adoption, this approach has regularly allowed a team at Google to safely delete thousands of lines of
feature-related code per quarter, and has made verificationof versions and other issues automatic.
The system has on many occasions prevented accidental use ofdeprecated or broken features in new
models.

3.4 Correction Cascades

There are often situations in which modela for problemA exists, but a solution for a slightly
different problemA′ is required. In this case, it can be tempting to learn a modela′(a) that takesa
as input and learns a small correction. This can appear to be afast, low-cost win, as the correction
model is likely very small and can often be done by a completely independent team. It is easy and
quick to create a first version.

However, this correction model has created a system dependency ona, making it significantly more
expensive to analyze improvements to that model in the future. Things get even worse if correc-
tion models are cascaded, with a model for problemA′′ learned on top ofa′, and so on. This can
easily happen for closely related problems, such as calibrating outputs to slightly different test dis-
tributions. It is not at all unlikely that a correction cascade will create a situation where improving
the accuracy ofa actually leads to system-level detriments. Additionally,such systems may create
deadlock, where the coupled ML system is in a poor local optimum, and nocomponent model may
be individually improved. At this point, the independent development that was initially attractive
now becomes a large barrier to progress.

A mitigation strategy is to augmenta to learn the corrections directly within the same model by
adding features that help the model distinguish among the various use-cases. At test time, the model
may be queried with the appropriate features for the appropriate test distributions. This is not a free
solution—the solutions for the various related problems remain coupled via CACE, but it may be
easier to make updates and evaluate their impact.

4 System-level Spaghetti

It is unfortunately common for systems that incorporate machine learning methods to end up with
high-debt design patterns. In this section, we examine several system-designanti-patterns[3] that
can surface in machine learning systems and which should be avoided or refactored where possible.

4.1 Glue Code

Machine learning researchers tend to develop general purpose solutions as self-contained packages.
A wide variety of these are available as open-source packages at places likemloss.org, or from
in-house code, proprietary packages, and cloud-based platforms. Using self-contained solutions
often results in aglue codesystem design pattern, in which a massive amount of supporting code is
written to get data into and out of general-purpose packages.

This glue code design pattern can be costly in the long term, as it tends to freeze a system to the
peculiarities of a specific package. General purpose solutions often have different design goals: they
seek to provide one learning system to solve many problems, but many practical software systems
are highly engineered to apply to one large-scale problem, for which many experimental solutions
are sought. While generic systems might make it possible to interchange optimization algorithms,
it is quite often refactoring of theconstructionof the problem space which yields the most benefit
to mature systems. The glue code pattern implicitly embeds this construction in supporting code
instead of in principally designed components. As a result,the glue code pattern often makes exper-

5

imentation with other machine learning approaches prohibitively expensive, resulting in an ongoing
tax on innovation.

Glue code can be reduced by choosing to re-implement specificalgorithms within the broader system
architecture. At first, this may seem like a high cost to pay—re-implementing a machine learning
package in C++ or Java that is already available inR or matlab, for example, may appear to be
a waste of effort. But the resulting system may require dramatically less glue code to integrate in
the overall system, be easier to test, be easier to maintain,and be better designed to allow alternate
approaches to be plugged in and empirically tested. Problem-specific machine learning code can
also be tweaked with problem-specific knowledge that is hardto support in general packages.

It may be surprising to the academic community to know that only a tiny fraction of the code in
many machine learning systems is actually doing “machine learning”. When we recognize that a
mature system might end up being (at most) 5% machine learning code and (at least) 95% glue code,
reimplementation rather than reuse of a clumsy API looks like a much better strategy.

4.2 Pipeline Jungles

As a special case of glue code,pipeline junglesoften appear in data preparation. These can evolve
organically, as new signals are identified and new information sources added. Without care, the
resulting system for preparing data in an ML-friendly format may become a jungle of scrapes, joins,
and sampling steps, often with intermediate files output. Managing these pipelines, detecting errors
and recovering from failures are all difficult and costly [1]. Testing such pipelines often requires
expensive end-to-end integration tests. All of this adds totechnical debt of a system and makes
further innovation more costly.

Pipeline jungles can only be avoided by thinking holistically about data collection and feature ex-
traction. The clean-slate approach of scrapping a pipelinejungle and redesigning from the ground
up is indeed a major investment of engineering effort, but one that can dramatically reduce ongoing
costs and speed further innovation.

It’s worth noting that glue code and pipeline jungles are symptomatic of integration issues that may
have a root cause in overly separated “research” and “engineering” roles. When machine learning
packages are developed in an ivory-tower setting, the resulting packages may appear to be more
like black boxes to the teams that actually employ them in practice. At Google, a hybrid research
approach where engineers and researchers are embedded together on the same teams (and indeed,
are often the same people) has helped reduce this source of friction significantly [10]. But even
when a fully integrated team structure is not possible, it can be advantageous to have close, active
collaborations.

4.3 Dead Experimental Codepaths

A common reaction to the hardening of glue code or pipeline jungles is that it becomes more and
more tempting to perform experiments with alternative algorithms or tweaks by implementing these
experimental codepaths as conditional branches within themain production code. For any individ-
ual change, the cost of experimenting in this manner is relatively low—none of the surrounding
infrastructure needs to be reworked. However, over time, these accumulated codepaths can create
a growing debt. Maintaining backward compatibility with experimental codepaths is a burden for
making more substantive changes. Furthermore, obsolete experimental codepaths can interact with
each other in unpredictable ways, and tracking which combinations are incompatible quickly results
in an exponential blowup in system complexity. A famous example of the dangers here was Knight
Capital’s system losing $465 million in 45 minutes apparently because of unexpected behavior from
obsolete experimental codepaths [9].

As with the case ofdead flagsin traditional software [7], it is often beneficial to periodically re-
examine each experimental branch to see what can be ripped out. Very often only a small subset of
the possible branches is actually used; many others may havebeen tested once and abandoned.

Dead experimental codepaths are a symptom of a more fundamental issue: in a healthy machine
learning system, experimental code should be well isolated, not leaving tendrils in multiple modules.
This may require rethinking code APIs. In our experience, the kinds of things we want to experiment

6

with vary over time; a redesign and a rewrite of some pieces may be needed periodically in order to
move forward efficiently.

As a real-world anecdote, in a recent cleanup effort of one important machine learning system at
Google, it was found possible to rip out tens of thousands of lines of unused experimental code-
paths. A follow-on rewrite with a tighter API allowed experimentation with new algorithms to be
performed with dramatically reduced effort and productionrisk and minimal incremental system
complexity.

4.4 Configuration Debt

Another potentially surprising area where debt can accumulate is in the configuration of machine
learning systems. Any large system has a wide range of configurable options, including which fea-
tures are used, how data is selected, a wide variety of algorithm-specific learning settings, potential
pre- or post-processing, verification methods, etc.

Many engineers do a great job of thinking hard about abstractions and unit tests in production code,
but may treat configuration (and extension of configuration)as an afterthought. Indeed, verification
or testing of configurations may not even be seen as important. Configuration by its very nature
tends to be the place where real-world messiness intrudes onbeautiful algorithms.

Consider the following examples. FeatureA was incorrectly logged from 9/14 to 9/17. Feature
B is not available on data before 10/7. The code used to computefeatureC has to change for
data before and after 11/1 because of changes to the logging format. FeatureD is not available
in production, so a substitute featuresD′ andD′′ must be used when querying the model in a live
setting. If featureZ is used, then jobs for training must be given extra memory dueto lookup
tables or they will train inefficiently. FeatureQ precludes the use of featureR because of latency
constraints. All this messiness makes configuration hard tomodify correctly, and hard to reason
about. However, mistakes in configuration can be costly, leading to serious loss of time, waste of
computing resources, or production issues.

Also, in a mature system which is being actively developed, the number of lines of configuration
can far exceed the number of lines of the code that actually does machine learning. Each line has a
potential for mistakes, and configurations are by their nature ephemeral and less well tested.

Assertions about configuration invariants can be critical to prevent mistakes, but careful thought is
needed about what kind of assertions will be useful. Anotheruseful tool is the ability to present
visual side-by-side differences (diffs) of two configurations. Because configurations are often copy-
and-pasted with small modifications, such diffs highlight important changes. And clearly, configu-
rations should be treated with the same level of seriousnessas code changes, and be carefully code
reviewed by peers.

5 Dealing with Changes in the External World

One of the things that makes machine learning systems so fascinating is that they often interact
directly with the external world. Experience has shown thatthe external world is rarely stable.
Indeed, the changing nature of the world is one of the sourcesof technical debt in machine learning
systems.

5.1 Fixed Thresholds in Dynamic Systems

It is often necessary to pick adecision thresholdfor a given model to perform some action: to predict
true or false, to mark an email as spam or not spam, to show or not show a given ad. One classic
approach in machine learning is to choose a threshold from a set of possible thresholds, in order to
get good tradeoffs on certain metrics, such as precision andrecall. However, such thresholds are
often manually set. Thus if a model updates on new data, the old manually set threshold may be
invalid. Manually updating many thresholds across many models is time-consuming and brittle.

A useful mitigation strategy for this kind of problem appears in [8], in which thresholds are learned
via simple evaluation on heldout validation data.

7

5.2 When Correlations No Longer Correlate

Machine learning systems often have a difficult time distinguishing the impact of correlated features.
This may not seem like a major problem: if two features are always correlated, but only one is truly
causal, it may still seem okay to ascribe credit to both and rely on their observed co-occurrence.

However, if the world suddenly stops making these features co-occur, prediction behavior may
change significantly. The full range of ML strategies for teasing apart correlation effects is be-
yond our scope; some excellent suggestions and references are given in [2]. For the purpose of this
paper, we note that non-causal correlations are another source of hidden debt.

5.3 Monitoring and Testing

Unit testing of individual components and end-to-end testsof running systems are valuable, but in
the face of a changing world such tests are not sufficient to provide evidence that a system is working
as intended. Live monitoring of system behavior in real timeis critical.

The key question is: what to monitor? It can be difficult to establish useful invariants, given that the
purpose of machine learning systems is to adapt over time. Weoffer two reasonable starting points.

Prediction Bias. In a system that is working as intended, it should usually be the case that the
distribution of predicted labels is equal to the distribution of observed labels. This is by no means
a comprehensive test, as it can be met by a null model that simply predicts average values of label
occurrences without regard to the input features. However,it is a surprisingly useful diagnostic, and
changes in metrics such as this are often indicative of an issue that requires attention. For example,
this method can help to detect cases in which the world behavior suddenly changes, making training
distributions drawn from historical data no longer reflective of current reality. Slicing prediction
bias by various dimensions isolate issues quickly, and can also be used for automated alerting.

Action Limits. In systems that are used to take actions in the real world, it can be useful to set
and enforce action limits as a sanity check. These limits should be broad enough not to trigger
spuriously. If the system hits a limit for a given action, automated alerts should fire and trigger
manual intervention or investigation.

6 Conclusions: Paying it Off

This paper has highlighted a number of areas where machine learning systems can create technical
debt, sometimes in surprising ways. This is not to say that machine learning is bad, or even that
technical debt is something to be avoided at all costs. It maybe reasonable to take on moderate
technical debt for the benefit of moving quickly in the short term, but this must be recognized and
accounted for lest it quickly grow unmanageable.

Perhaps the most important insight to be gained is that technical debt is an issue thatbothengineers
and researchers need to be aware of. Research solutions thatprovide a tiny accuracy benefit at the
cost of massive increases in system complexity are rarely wise practice. Even the addition of one or
two seemingly innocuous data dependencies can slow furtherprogress.

Paying down technical debt is not always as exciting as proving a new theorem, but it is a critical part
of consistently strong innovation. And developing holistic, elegant solutions for complex machine
learning systems is deeply rewarding work.

Acknowledgments

This paper owes much to the important lessons learned day to day in a culture that values both
innovative ML research and strong engineering practice. Many colleagues have helped shape our
thoughts here, and the benefit of accumulated folk wisdom cannot be overstated. We would like to
specifically recognize the following: Luis Cobo, Sharat Chikkerur, Jean-Francois Crespo, Jeff Dean,
Dan Dennison, Philip Henderson, Arnar Mar Hrafnkelsson, Ankur Jain, Joe Kovac, Jeremy Kubica,
H. Brendan McMahan, Satyaki Mahalanabis, Lan Nie, Michael Pohl, Abdul Salem, Sajid Siddiqi,
Ricky Shan, Alan Skelly, Cory Williams, and Andrew Young.

8

References

[1] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko,
D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Fault-tolerant and scalable joining of
continuous data streams. InSIGMOD ’13: Proceedings of the 2013 international conference
on Management of data, pages 577–588, New York, NY, USA, 2013.

[2] L. Bottou, J. Peters, J. Quiñonero Candela, D. X. Charles, D. M. Chickering, E. Portugaly,
D. Ray, P. Simard, and E. Snelson. Counterfactual reasoningand learning systems: The exam-
ple of computational advertising.Journal of Machine Learning Research, 14(Nov), 2013.

[3] W. J. Brown, H. W. McCormick, T. J. Mowbray, and R. C. Malveau. Antipatterns: refactoring
software, architectures, and projects in crisis. 1998.

[4] M. Fowler. Refactoring: improving the design of existing code. Pearson Education India, 1999.

[5] A. Lavoie, M. E. Otey, N. Ratliff, and D. Sculley. Historydependent domain adaptation. In
Domain Adaptation Workshop at NIPS ’11, 2011.

[6] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips,
E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,A. M. Hrafnkelsson, T. Boulos,
and J. Kubica. Ad click prediction: a view from the trenches.In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013, 2013.

[7] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali. Searching for build debt: Experi-
ences managing technical debt at google. InProceedings of the Third International Workshop
on Managing Technical Debt, 2012.

[8] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou. Detecting ad-
versarial advertisements in the wild. InProceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24,
2011, 2011.

[9] Securities and E. Commission.SEC Charges Knight Capital With Violations of Market Access
Rule, 2013.

[10] A. Spector, P. Norvig, and S. Petrov. Google’s hybrid approach to research.Communications
of the ACM, 55 Issue 7, 2012.

9

	Machine Learning and Complex Systems
	Complex Models Erode Boundaries
	Entanglement
	Hidden Feedback Loops
	Undeclared Consumers

	Data Dependencies Cost More than Code Dependencies
	Unstable Data Dependencies
	Underutilized Data Dependencies
	Static Analysis of Data Dependencies
	Correction Cascades

	System-level Spaghetti
	Glue Code
	Pipeline Jungles
	Dead Experimental Codepaths
	Configuration Debt

	Dealing with Changes in the External World
	Fixed Thresholds in Dynamic Systems
	When Correlations No Longer Correlate
	Monitoring and Testing

	Conclusions: Paying it Off

