Machine Learning:
The High-Interest Credit Card of Technical Debt

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov,
Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young
{dscul | ey, ghol t, dgg, edavydov }@oogl e. com
{t oddphi | | i ps, ebner, vchaudhary, mnwyoung}@oogl e. com
Google, Inc

Abstract

Machine learning offers a fantastically powerful toollat building complex sys-
tems quickly. This paper argues that it is dangerous to tbfrtkese quick wins
as coming for free. Using the framework tefchnical deltwe note that it is re-
markably easy to incur massive ongoing maintenance costeatystem level
when applying machine learning. The goal of this paper islight several ma-
chine learning specific risk factors and design patterngtaMoided or refactored
where possible. These include boundary erosion, entaegiermidden feedback
loops, undeclared consumers, data dependencies, chantipesaxternal world,
and a variety of system-level anti-patterns.

1 Machine Learning and Complex Systems

Real world software engineers are often faced with the ehgé of moving quickly to ship new
products or services, which can lead to a dilemma betweesdspieexecution and quality of en-
gineering. The concept déchnical debtvas first introduced by Ward Cunningham in 1992 as a
way to help quantify the cost of such decisions. Like inagrfiscal debt, there are often sound
strategic reasons to take on technical debt. Not all deb¢égssarily bad, but technical debt does
tend to compound. Deferring the work to pay it off resultsrareasing costs, system brittleness,
and reduced rates of innovation.

Traditional methods of paying off technical debt includéaotoring, increasing coverage of unit
tests, deleting dead code, reducing dependencies, tiggté#ls, and improving documentation
[4]. The goal of these activities isotto add new functionality, but to make it easier to add future
improvements, be cheaper to maintain, and reduce thetdi of bugs.

One of the basic arguments in this paper is that machineifeppackages have all the basic code
complexity issues as normal code, but also have a largeerylgtvel complexity that can create

hidden debt. Thus, refactoring these libraries, addintgbanit tests, and associated activity is time
well spent but does not necessarily address debt at a sykteshs

In this paper, we focus on the system-level interaction betwmachine learning code and larger sys-
tems as an area where hidden technical debt may rapidly adatenAt a system-level, a machine
learning model may subtly erode abstraction boundariemalf be tempting to re-use input sig-
nals in ways that create unintended tight coupling of otihewisjoint systems. Machine learning
packages may often be treated as black boxes, resultingge taasses of “glue code” or calibra-
tion layers that can lock in assumptions. Changes in therdtgvorld may make models or input
signals change behavior in unintended ways, ratchetingaiptenance cost and the burden of any
debt. Even monitoring that the system as a whole is operasrigtended may be difficult without
careful design.

Indeed, a remarkable portion of real-world “machine leaghiwork is devoted to tackling issues
of this form. Paying down technical debt may initially appksss glamorous than research results
usually reported in academic ML conferences. But it is ezitifor long-term system health and
enables algorithmic advances and other cutting-edge weprents.

2 Complex Models Erode Boundaries

Traditional software engineering practice has shown thrahg abstraction boundaries using en-
capsulation and modular design help create maintainalale itowhich it is easy to make isolated
changes and improvements. Strict abstraction boundaeigsédxpress the invariants and logical
consistency of the information inputs and outputs from aergicomponent[4].

Unfortunately, it is difficult to enforce strict abstraatitboundaries for machine learning systems
by requiring these systems to adhere to specific intendeaviieh Indeed, arguably the most im-
portant reason for using a machine learning system is @lgdisatthe desired behavior cannot be
effectively implemented in software logic without depegi®n external dataThere is little way to
separate abstract behavioral invariants from quirks af.dBihe resulting erosion of boundaries can
cause significant increases in technical debt. In this@eete look at several issues of this form.

2.1 Entanglement

From a high level perspective, a machine learning packagéoigl for mixing data sources together.
That is, machine learning models are machines for creatitenglement and making the isolation
of improvements effectively impossible.

To make this concrete, imagine we have a system that usagdsat, ...x,, in a model. If we
change the input distribution of valuessin, the importance, weights, or use of the remaining 1
features may all change—this is true whether the model iairetd fully in a batch style or allowed
to adapt in an online fashion. Adding a new featxifg ; can cause similar changes, as can removing
any featurex;. No inputs are ever really independent. We refer to this herdne CACE principle:
Changing Anything Changes Everything.

The net result of such changes is that prediction behavigr aitar, either subtly or dramatically,
on various slices of the distribution. The same principlpligs to hyper-parameters. Changes in
regularization strength, learning settings, samplingio@s in training, convergence thresholds, and
essentially every other possible tweak can have similaitiewanging effects.

One possible mitigation strategy is to isolate models amgesensembles. This approach is useful
in situations such a5][8], in which sub-problems decompaserally, or in which the cost of main-
taining separate models is outweighed by the benefits offeedomodularity. However, in many
large-scale settings such a strategy may prove unscaldbtewithin a given model, the issues of
entanglement may still be present.

A second possible mitigation strategy is to develop methafdsaining deep insights into the be-
havior of model predictions. One such method was propos€@l.ifin which a high-dimensional
visualization tool was used to allow researchers to quiskly effects across many dimensions and
slicings. Metrics that operate on a slice-by-slice basig also be extremely useful.

A third possibility is to attempt to use more sophisticategiularization methods to enforce that any
changes in prediction performance carry a cost in the dgef@iinction used in trainind [5]. Like
any other regularization approach, this kind of approachbesuseful but is far from a guarantee and
may add more debt via increased system complexity than igegtlvia decreased entanglement.

The above mitigation strategies may help, but this issuetarglement is in some sense innate to
machine learning, regardless of the particular learniggrithm being used. In practice, this all too

often means that shipping the first version of a machine iegrsystem is easy, but that making

subsequent improvements is unexpectedly difficult. This@eration should be weighed carefully

against deadline pressures for version 1.0 of any ML system.

2.2 Hidden Feedback Loops

Another worry for real-world systems lies in hidden feedbmops. Systems that learn from world
behavior are clearly intended to be part of a feedback loopekample, a system for predicting the
click through rate (CTR) of news headlines on a websiteyikelies on user clicks as training labels,
which in turn depend on previous predictions from the modeiis leads to issues in analyzing
system performance, but these are the obvious kinds oftitatichallenges that machine learning
researchers may find natural to investigate [2].

As an example of &iddenloop, now imagine that one of the input features used in tAiR @odel

is a featurex,,.., that reports how many news headlines the given user hadlick in the past
week. If the CTR model is improved, it is likely that all usarg given better recommendations and
many users will click on more headlines. However, the resiuthis effect may not fully surface for
at least a week, as thg,.., feature adjusts. Furthermore, if the model is updated omémedata,
either in batch mode at a later time or in streaming fashidah wline updates, the model may later
adjust its opinion of the,,..; feature in response. In such a setting, the system will glawange
behavior, potentially over a time scale much longer than ekweésradual changes not visible in
quick experiments make analyzing the effect of proposedges extremely difficult, and add cost
to even simple improvements.

We recommend looking carefully for hidden feedback loops$ r@moving them whenever feasible.

2.3 Undeclared Consumers

Oftentimes, a prediction from a machine learning modes made accessible to a wide variety
of systems, either at runtime or by writing to logs that magdde consumed by other systems.
In more classical software engineering, these issues teead to as visibility debt([[7]. Without
access controls, it is possible for some of these consumé&sundeclaredconsumers, consuming
the output of a given prediction model as an input to anotbergonent of the system. Undeclared
consumers are expensive at best and dangerous at worst.

The expense of undeclared consumers is drawn from the suidtkcoupling of modelA to other
parts of the stack. Changesdowill very likely impact these other parts, sometimes in wtat are
unintended, poorly understood, or detrimental. In pragtihis has the effect of making it difficult
and expensive to make any changesitat all.

The danger of undeclared consumers is that they may inteoddditional hidden feedback loops.
Imagine in our news headline CTR prediction system thagtieanother component of the system
in charge of “intelligently” determining the size of the tamsed for the headline. If this font-size

module starts consuming CTR as an input signal, and foetisis an effect on user propensity to
click, then the inclusion of CTR in font-size adds a new hidéeedback loop. It's easy to imagine

a case where such a system would gradually and endlesshas®the size of all headlines.

Undeclared consumers may be difficult to detect unless thiesyis specifically designed to guard
against this case. In the absence of barriers, engineersatasally grab for the most convenient
signal, especially when there are deadline pressures.

3 Data Dependencies Cost More than Code Dependencies

In [7], dependency debs$ noted as a key contributor to code complexity and techmieht in
classical software engineering settings. We argue hetel#ta dependenciga machine learning
systems carry a similar capacity for building debt. Funthmere, while code dependencies can be
relatively easy to identify via static analysis, linkageyins, and the like, it is far less common that
data dependencies have similar analysis tools. Thus, ibeanappropriately easy to build large
data-dependency chains that can be difficult to untangle.

3.1 Unstable Data Dependencies

To move quickly, it is often convenient to consume signalinasit features that are produced by
other systems. However, some input signalsiarstable meaning that they qualitatively change

behavior over time. This can happen implicitly, when theuingignal comes from another machine
learning model itself that updates over time, or a data-dépet lookup table, such as for computing
TF/IDF scores or semantic mappings. It can also happenaditkplivhen the engineering ownership
of the input signal is separate from the engineering owngistthe model that consumes it. In such
cases, changes and improvements to the input signal maygbkry rolled out, without regard
for how the machine learning system may be affected. As nabexve in the CACE principle,
“improvements” to input signals may have arbitrary, somes deleterious, effects that are costly
to diagnose and address.

One common mitigation strategy for unstable data deperneeigto create aersioned copyf a
given signal. For example, rather than allowing a semangpping of words to topic clusters to
change over time, it might be reasonable to create a frozesioveof this mapping and use it until
such a time as an updated version has been fully vetted.oviimgj carries its own costs, however,
such as potential staleness. And the requirement to maintaltiple versions of the same signal
over time is a contributor to technical debt in its own right.

3.2 Underutilized Data Dependencies

In code, underutilized dependencies are packages that@styminneeded [7]. Similarly, under-
utilized data dependencies include input features or &ghat provide little incremental value in
terms of accuracy. Underutilized dependencies are castlge they make the system unnecessarily
vulnerable to changes.

Underutilized dependencies can creep into a machine leamodel in several ways.

Legacy Features.The most common is that a featufeis included in a model early in its develop-
ment. As time goes on, other features are added that fakestly or entirely redundant, but this
is not detected.

Bundled Features.Sometimes, a group of features is evaluated and found toriedibl. Because
of deadline pressures or similar effects, all the featurdise bundle are added to the model together.
This form of process can hide features that add little or noeza

e-Features. As machine learning researchers, it is satisfying to impnmodel accuracy. It can be
tempting to add a new feature to a model that improves acgueaen when the accuracy gain is
very small or when the complexity overhead might be high.

In all these cases, features could be removed from the madttelitile or no loss in accuracy. But
because they are still present, the model will likely asslggm some weight, and the system is
therefore vulnerable, sometimes catastrophically sohémges in these unnecessary features.

As an example, suppose that after a team merger, to easariséitm from an old product number-
ing scheme to new product numbers, both schemes are lef sydtem as features. New products
get only a new number, but old products may have both. The imadbarning algorithm knows
of no reason to reduce its reliance on the old numbers. A ysar,Isomeone acting with good
intent cleans up the code that stops populating the datatiiseéhe old numbers. This change goes
undetected by regression tests because no one else islsimghy more. This will not be a good
day for the maintainers of the machine learning system.

A common mitigation strategy for under-utilized dependesds to regularly evaluate the effect
of removing individual features from a given model and acttluis information whenever possi-

ble. More broadly, it may be important to build cultural aeaess about the long-term benefit of
underutilized dependency cleanup.

3.3 Static Analysis of Data Dependencies

One of the key issues in data dependency debt is the diffiofifperforming static analysis. While
compilers and build systems typically provide such funmigy for code, data dependencies may
require additional tooling to track. Without this, it can O#ficult to manually track the use of
data in a system. On teams with many engineers, or if therenatple interacting teams, not
everyone knows the status of every single feature, and ibeadifficult for any individual human
to know every last place where the feature was used. For drasyppose that the version of a

dictionary must be changed; in a large company, it may notasg even to find all the consumers
of the dictionary. Or suppose that for efficiency a particgignal will no longer be computed; are
all former consumers of the signal done with it? Even if theme no references to it in the current
version of the codebase, are there still production ingtamgth older binaries that use it? Making
changes safely can be difficult without automatic tooling.

A remarkably useful automated feature management tool wsesrithed in[[6], which enables data
sources and features to be annotated. Automated checkbarabé run to ensure that all depen-
dencies have the appropriate annotations, and dependeas/dan be fully resolved. Since its
adoption, this approach has regularly allowed a team at fBdogafely delete thousands of lines of
feature-related code per quarter, and has made verificativersions and other issues automatic.
The system has on many occasions prevented accidental depretated or broken features in new
models.

3.4 Correction Cascades

There are often situations in which modelfor problem A exists, but a solution for a slightly

different problemA’ is required. In this case, it can be tempting to learn a mafel) that takes:

as input and learns a small correction. This can appear tofd&,dow-cost win, as the correction
model is likely very small and can often be done by a compfetelependent team. It is easy and
quick to create a first version.

However, this correction model has created a system depeypd®a, making it significantly more
expensive to analyze improvements to that model in the éutlthings get even worse if correc-
tion models are cascaded, with a model for probléthlearned on top of’, and so on. This can
easily happen for closely related problems, such as céligrautputs to slightly different test dis-
tributions. It is not at all unlikely that a correction cadeawill create a situation where improving
the accuracy of: actually leads to system-level detriments. Additionalych systems may create
deadlock where the coupled ML system is in a poor local optimum, andaraponent model may
be individually improved. At this point, the independentelepment that was initially attractive
now becomes a large barrier to progress.

A mitigation strategy is to augmentto learn the corrections directly within the same model by
adding features that help the model distinguish among theususe-cases. At test time, the model
may be queried with the appropriate features for the apfatgptest distributions. This is not a free
solution—the solutions for the various related problemsaiencoupled via CACE, but it may be
easier to make updates and evaluate their impact.

4 System-level Spaghetti

It is unfortunately common for systems that incorporate miree learning methods to end up with
high-debt design patterns. In this section, we examineraksgstem-desiganti-patterns[3] that
can surface in machine learning systems and which shoulddigesl or refactored where possible.

4.1 Glue Code

Machine learning researchers tend to develop general pegautions as self-contained packages.
A wide variety of these are available as open-source packaigglaces likel oss. or g, or from
in-house code, proprietary packages, and cloud-basefbipiest Using self-contained solutions
often results in @lue codesystem design pattern, in which a massive amount of supigortide is
written to get data into and out of general-purpose packages

This glue code design pattern can be costly in the long tesnit, tends to freeze a system to the
peculiarities of a specific package. General purpose solsitbiften have different design goals: they
seek to provide one learning system to solve many probleatsnhny practical software systems
are highly engineered to apply to one large-scale problemyhich many experimental solutions
are sought. While generic systems might make it possibletéwdhange optimization algorithms,
it is quite often refactoring of theonstructionof the problem space which yields the most benefit
to mature systems. The glue code pattern implicitly embkigscdonstruction in supporting code
instead of in principally designed components. As a retudtglue code pattern often makes exper-

imentation with other machine learning approaches prabdby expensive, resulting in an ongoing
tax on innovation.

Glue code can be reduced by choosing to re-implement spalgficithms within the broader system
architecture. At first, this may seem like a high cost to pay-+mplementing a machine learning
package in C++ or Java that is already availabl®ior mat | ab, for example, may appear to be
a waste of effort. But the resulting system may require dtealdy less glue code to integrate in
the overall system, be easier to test, be easier to maimtaihbe better designed to allow alternate
approaches to be plugged in and empirically tested. Probfgguific machine learning code can
also be tweaked with problem-specific knowledge that is kastipport in general packages.

It may be surprising to the academic community to know thdy artiny fraction of the code in
many machine learning systems is actually doing “machiaeniag”. When we recognize that a
mature system might end up being (at most) 5% machine lgaooide and (at least) 95% glue code,
reimplementation rather than reuse of a clumsy API looks diknuch better strategy.

4.2 Pipeline Jungles

As a special case of glue codapeline junglesoften appear in data preparation. These can evolve
organically, as new signals are identified and new inforomaiources added. Without care, the
resulting system for preparing data in an ML-friendly fotmeay become a jungle of scrapes, joins,
and sampling steps, often with intermediate files outputn&dgng these pipelines, detecting errors
and recovering from failures are all difficult and cosfly.[Iesting such pipelines often requires
expensive end-to-end integration tests. All of this addsettnical debt of a system and makes
further innovation more costly.

Pipeline jungles can only be avoided by thinking holisticalbout data collection and feature ex-
traction. The clean-slate approach of scrapping a pipglingle and redesigning from the ground
up is indeed a major investment of engineering effort, bt tiat can dramatically reduce ongoing
costs and speed further innovation.

It's worth noting that glue code and pipeline jungles are giomatic of integration issues that may
have a root cause in overly separated “research” and “eagingg roles. When machine learning
packages are developed in an ivory-tower setting, the tieagybackages may appear to be more
like black boxes to the teams that actually employ them igme. At Google, a hybrid research
approach where engineers and researchers are embeddtetagethe same teams (and indeed,
are often the same people) has helped reduce this sourcietarrsignificantly [10]. But even
when a fully integrated team structure is not possible, it lsa advantageous to have close, active
collaborations.

4.3 Dead Experimental Codepaths

A common reaction to the hardening of glue code or pipelimgles is that it becomes more and
more tempting to perform experiments with alternative atgms or tweaks by implementing these
experimental codepaths as conditional branches withimthi@ production code. For any individ-
ual change, the cost of experimenting in this manner isivelstlow—none of the surrounding
infrastructure needs to be reworked. However, over timese¢taccumulated codepaths can create
a growing debt. Maintaining backward compatibility withpeximental codepaths is a burden for
making more substantive changes. Furthermore, obsolptriemental codepaths can interact with
each other in unpredictable ways, and tracking which coatlins are incompatible quickly results
in an exponential blowup in system complexity. A famous eglnof the dangers here was Knight
Capital’s system losing $465 million in 45 minutes appdselécause of unexpected behavior from
obsolete experimental codepath’s [9].

As with the case oflead flagsn traditional software([7], it is often beneficial to periodlly re-
examine each experimental branch to see what can be rippe®lesy often only a small subset of
the possible branches is actually used; many others maytiemretested once and abandoned.

Dead experimental codepaths are a symptom of a more fundahigsue: in a healthy machine
learning system, experimental code should be well isojatetdeaving tendrils in multiple modules.
This may require rethinking code APIs. In our experience Kihds of things we want to experiment

with vary over time; a redesign and a rewrite of some pieceslmaneeded periodically in order to
move forward efficiently.

As a real-world anecdote, in a recent cleanup effort of orngotant machine learning system at
Google, it was found possible to rip out tens of thousandsnefs| of unused experimental code-
paths. A follow-on rewrite with a tighter API allowed expaentation with new algorithms to be
performed with dramatically reduced effort and productiak and minimal incremental system
complexity.

4.4 Configuration Debt

Another potentially surprising area where debt can accataus in the configuration of machine
learning systems. Any large system has a wide range of caabtrioptions, including which fea-
tures are used, how data is selected, a wide variety of #hgarspecific learning settings, potential
pre- or post-processing, verification methods, etc.

Many engineers do a great job of thinking hard about abstrasaind unit tests in production code,
but may treat configuration (and extension of configurataman afterthought. Indeed, verification
or testing of configurations may not even be seen as importaatfiguration by its very nature
tends to be the place where real-world messiness intrudbsautiful algorithms.

Consider the following examples. Featufiewas incorrectly logged from 9/14 to 9/17. Feature
B is not available on data before 10/7. The code used to confpatareC' has to change for
data before and after 11/1 because of changes to the loggintaf. Feature) is not available

in production, so a substitute featurB$ and D" must be used when querying the model in a live
setting. If featureZ is used, then jobs for training must be given extra memory tduleokup
tables or they will train inefficiently. Featui@ precludes the use of featufebecause of latency
constraints. All this messiness makes configuration hamddify correctly, and hard to reason
about. However, mistakes in configuration can be costlyitepto serious loss of time, waste of
computing resources, or production issues.

Also, in a mature system which is being actively developkd,rtumber of lines of configuration
can far exceed the number of lines of the code that actuaélg deachine learning. Each line has a
potential for mistakes, and configurations are by their reatphemeral and less well tested.

Assertions about configuration invariants can be critiogirevent mistakes, but careful thought is
needed about what kind of assertions will be useful. Anotlssful tool is the ability to present
visual side-by-side differences (diffs) of two configuoais. Because configurations are often copy-
and-pasted with small modifications, such diffs highlighportant changes. And clearly, configu-
rations should be treated with the same level of serioussessde changes, and be carefully code
reviewed by peers.

5 Dealing with Changes in the External World

One of the things that makes machine learning systems smédisgy is that they often interact
directly with the external world. Experience has shown tihat external world is rarely stable.
Indeed, the changing nature of the world is one of the sowtehnical debt in machine learning
systems.

5.1 Fixed Thresholds in Dynamic Systems

Itis often necessary to pickdecision thresholdfbr a given model to perform some action: to predict
true or false, to mark an email as spam or not spam, to showtshwow a given ad. One classic
approach in machine learning is to choose a threshold froet af possible thresholds, in order to
get good tradeoffs on certain metrics, such as precisiorrecall. However, such thresholds are
often manually set. Thus if a model updates on new data, thenahually set threshold may be
invalid. Manually updating many thresholds across manyetsid time-consuming and brittle.

A useful mitigation strategy for this kind of problem appear [8], in which thresholds are learned
via simple evaluation on heldout validation data.

5.2 When Correlations No Longer Correlate

Machine learning systems often have a difficult time digtisging the impact of correlated features.
This may not seem like a major problem: if two features areagicorrelated, but only one is truly
causal, it may still seem okay to ascribe credit to both ahdae their observed co-occurrence.

However, if the world suddenly stops making these featuesacur, prediction behavior may
change significantly. The full range of ML strategies forsieg apart correlation effects is be-
yond our scope; some excellent suggestions and refereregivan in [2]. For the purpose of this
paper, we note that non-causal correlations are anotheresotihidden debt.

5.3 Monitoring and Testing

Unit testing of individual components and end-to-end te$tainning systems are valuable, but in
the face of a changing world such tests are not sufficientdeige evidence that a system is working
as intended. Live monitoring of system behavior in real tiseritical.

The key question is: what to monitor? It can be difficult teagdish useful invariants, given that the
purpose of machine learning systems is to adapt over timeofiéfetwo reasonable starting points.

Prediction Bias. In a system that is working as intended, it should usuallyHeedase that the
distribution of predicted labels is equal to the distribatof observed labels. This is by no means
a comprehensive test, as it can be met by a null model that\siongdicts average values of label
occurrences without regard to the input features. Howésra surprisingly useful diagnostic, and
changes in metrics such as this are often indicative of areigsat requires attention. For example,
this method can help to detect cases in which the world behauddenly changes, making training
distributions drawn from historical data no longer refleetof current reality. Slicing prediction
bias by various dimensions isolate issues quickly, and smtee used for automated alerting.

Action Limits. In systems that are used to take actions in the real worldritbe useful to set
and enforce action limits as a sanity check. These limitailshbe broad enough not to trigger
spuriously. If the system hits a limit for a given action, @utted alerts should fire and trigger
manual intervention or investigation.

6 Conclusions: Paying it Off

This paper has highlighted a number of areas where machaneitg systems can create technical
debt, sometimes in surprising ways. This is not to say thathina learning is bad, or even that
technical debt is something to be avoided at all costs. It beyeasonable to take on moderate
technical debt for the benefit of moving quickly in the sherint, but this must be recognized and
accounted for lest it quickly grow unmanageable.

Perhaps the most important insight to be gained is that teghatebt is an issue thabthengineers
and researchers need to be aware of. Research solutionsdkite a tiny accuracy benefit at the
cost of massive increases in system complexity are raredg piiactice. Even the addition of one or
two seemingly innocuous data dependencies can slow fystbgress.

Paying down technical debt is not always as exciting as popainew theorem, but it is a critical part
of consistently strong innovation. And developing hotisglegant solutions for complex machine
learning systems is deeply rewarding work.

Acknowledgments

This paper owes much to the important lessons learned dagytanda culture that values both
innovative ML research and strong engineering practicenyMablleagues have helped shape our
thoughts here, and the benefit of accumulated folk wisdomatame overstated. We would like to
specifically recognize the following: Luis Cobo, Sharatk&erur, Jean-Francois Crespo, Jeff Dean,
Dan Dennison, Philip Henderson, Arnar Mar Hrafnkelssorkukrdain, Joe Kovac, Jeremy Kubica,
H. Brendan McMahan, Satyaki Mahalanabis, Lan Nie, Micha|PAbdul Salem, Sajid Siddiqi,
Ricky Shan, Alan Skelly, Cory Williams, and Andrew Young.

References

[1]

[2]

R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H.gJian Qiu, A. Reznichenko,
D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Faldtdat and scalable joining of
continuous data streams. $iIGMOD '13: Proceedings of the 2013 international confeen
on Management of datpages 577-588, New York, NY, USA, 2013.

L. Bottou, J. Peters, J. Quonero Candela, D. X. Charles, D. M. Chickering, E. Portygal
D. Ray, P. Simard, and E. Snelson. Counterfactual reas@amddearning systems: The exam-
ple of computational advertisingournal of Machine Learning Researctv(Nov), 2013.

[3] W.J. Brown, H. W. McCormick, T. J. Mowbray, and R. C. Maate Antipatterns: refactoring

[4]

software, architectures, and projects in crisis. 1998.
M. Fowler. Refactoring: improving the design of existing coBearson Education India, 1999.

[5] A. Lavoie, M. E. Otey, N. Ratliff, and D. Sculley. Histogependent domain adaptation. In

[6]

[7]

[8]

[9]

Domain Adaptation Workshop at NIPS ’12011.

H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, Jra@dy, L. Nie, T. Phillips,
E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenbefy,M. Hrafnkelsson, T. Boulos,
and J. Kubica. Ad click prediction: a view from the trenchés.The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Daiaig), KDD 2013, Chicago, IL,
USA, August 11-14, 2012013.

J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. BhinSaarching for build debt: Experi-
ences managing technical debt at googlePioceedings of the Third International Workshop
on Managing Technical Dep2012.

D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Haingtg and Y. Zhou. Detecting ad-

versarial advertisements in the wild. Rroceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San @i€f, USA, August 21-24,

2011 2011.

Securities and E. CommissioBEC Charges Knight Capital With Violations of Market Access
Rule 2013.

[10] A. Spector, P. Norvig, and S. Petrov. Google’s hybrig@ach to researchCommunications

of the ACM 55 Issue 7, 2012.

	Machine Learning and Complex Systems
	Complex Models Erode Boundaries
	Entanglement
	Hidden Feedback Loops
	Undeclared Consumers

	Data Dependencies Cost More than Code Dependencies
	Unstable Data Dependencies
	Underutilized Data Dependencies
	Static Analysis of Data Dependencies
	Correction Cascades

	System-level Spaghetti
	Glue Code
	Pipeline Jungles
	Dead Experimental Codepaths
	Configuration Debt

	Dealing with Changes in the External World
	Fixed Thresholds in Dynamic Systems
	When Correlations No Longer Correlate
	Monitoring and Testing

	Conclusions: Paying it Off

