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Ew k 80 | 112 | 128 | 192 | 256
HERES | 80 | 112 | 128 | 192 | 256
RSA 1024 | 2048 | 3072 | 7680 | 15360
DH 1024 | 2048 | 3072 | 7680 |15360
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loop {

req = receiveRequest;

rsp = application reg;

sendResponse rsp;

}
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"On the duality of operating
system structures”, 1978
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"Why Threads Are A Bad Idea", 1996
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"Why Events Are A Bad Idea", 2003
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WAI & Warp

HTTP server

Mighty

Logger | ) Lockless algorithm

WAI (Web Application Interface)

Request -> IO Response

Scheduling | HTTP engine
Per-conn buffer \":j Warp
New parser
Concurrent Libraries Lock striping
Muticore IO Manager Per-core dispatcher
Scalable event regist
Many bug fixes ’\}j GHC RTS
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Abstract

Haskell threads provide a key, lightweight concurrency abstrac-
tion to simplify the programming of important network applica-
tions such as web servers and software-defined network (SDN)
controllers. The flagship Glasgow Haskell Compiler (GHC) iniro-
duces a run-time system (RTS) to achieve a high-performance mul-
ticore implementation of Haskell threads, by introducing effective
components such as a multicore scheduler, a parallel garbage col-
lector, an IO manager, and efficient multicore memory allocation.
Evaluations of the GHC RTS, however, show that it does not scale
well on multicore processors, leading to poor performance of many
network applications that try to use lightweight Haskell threads. In
this paper, we show that the GHC IO manager, which is a crucial
component of the GHC RTS, is the scaling bottleneck. Through a

Kazuhiko Yamamoto

I1J Innovation Institute Inc.
kazu@iij.ad.jp

1. Introduction

Huskell threads (also known as green threads or user threads) pro-
vide a key abstraction for writing high-performance, concurrent
programs [16] in Haskell [12]. For example, consider a network
server such as a web server. Serving a web request may involve
disk I0s to fetch the requested web page, which can be slow. To
achieve high performance, web servers process other requests, if
any are available, while waiting for slow disk operations to com-
plete. During high load, a large number of requests may arrive dur-
ing the [0s, which gives rise to many requesis in progress con-
currently. A naive implementation, using one native thread (i.e.
OS thread) per request would lead to the use of a large number
of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In con-
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The Performance of

wa I"p Open Source Applications
Speed, Precision, and a Bit of Serendipity
Kazu Yamamoto,

Michael Snoyman, and Andreas Voellmy

Warp is a high-performance HTTP server library written in Haskell, a purely functional programming
language. Both Yesod, a web application framework, and mighty , an HTTP server, are implemented
over Warp. According to our throughput benchmark, mighty provides performance on a par with

nginx . This article will explain the architecture of Warp and how we achieved its performance. Warp
can run on many platforms, including Linux, BSD variants, Mac 0S8, and Windows. To simplify our
explanation, however, we will only talk about Linux for the remainder of this article.

Network Programming in Haskell

Some people believe that functional programming languages are slow or impractical. However, to the
best of our knowledge, Haskell provides a nearly ideal approach for network programming. This is
because the Glasgow Haskell Compiler (GHC), the flagship compiler for Haskell, provides lightweight
and robust user threads {sometimes called green threads). In this section, we briefly review some
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