Haskell CHTTP2ZFEE L THF UL

LA Z

@azu_yanmanot o

SnEs =

i3
= TLS & DELLY
s BREXAL YR
= Warp

i

20094 Haskel CHTTPH — /\Mughty@;é =7 FHia
20114 Mightyz WAIZ 7Y & L THER

WAIDHTTPI Y Y Y OWarpDH R ICS N
2013%E108 http/2.0= =/\ v AY IS

HTTP/2 0 [& HPACK ZEZE LR &
AHIBED XA,

%’5fdt;UT£0 o o

i ‘o’
?(1 \jﬂ\

2013F 128 HPACKD A4z £ U fchttp2 libz ')) — X
20145108 7 L—L7ZEMU fzhttp2 libz) U —X
20145 10H Warp/\httpz%%ﬂé’%ﬂé’%ﬁﬂﬁﬁ

2014118 TLS & DEE LY

TLS & DE; LY

ATwvw 71

® Haskell D TLS 21472 YIC

ALPN(Application Layer Protocol Negotiation)
ZHEEEEEBIM U o
= NPN(Next Protocol Negotiation) (&t /R—k i TWW e
" NPN &% (C ALPN =33
(DN FREAEARICNYN—IENT)

TH Warp 5 HTTP/2 T
7o EBETEERWN

2014F10824H

Firefox Nightly £ >7@ATIH,
TLS T Rz 7 LT, B=

T Finished &> 7fzt&lc, 9<IC
Alert (close notification) ZiX-> T
CHATCID, EH5LTTCLESH?

Cipher SuiteshHTTP/2D {+#& T
BERTDEDEH > TRVDTIE
BWTUL & 2D

BEsA1—b

" HTTP/2 DEK
=" TLS ECDHE_RSA WITH_AES 128 GCM_SHA256

® Firefox
=" TLS ECDHE_RSA WITH_AES 128 GCM_SHA256

® Chrome
=" TLS ECDHE_RSA WITH_AES 128 GCM_SHA256
=" TLS DHE RSA_WITH_AES 128 GCM_SHA256

= Haskell TLS 21 7 Z U ICE D BRWES
= ECDHE(Elliptic Curve Diffie-Hellman Ephemeral)
= 5g@n fE BRI Dlffie Hellman

= AES GCM(Galois/Counter Mode)

AT T2

SHTTPR2 hY 7 7L YV AREES

Firefox|dlE5 XA1— M DEXK %
MYlcTEEIT&L

K

= Firefox © TLS M EK % disabled

® network.http.spdy.enforce-tls-profile

® Firefox &N/
= TLS RSA WITH AES CBC SHA

AT v T3

= AES GCM DEEFEFEELL
" GCM (ISt & AR :;&E&Wé?r%

mTLS IC AEAD ZEREUIC
= Authenticated Encryption with Additional Data

= AES GCM ZfARAATLE

ARY—-LES Ay 7S CBC AEAD
I/ Nonce
e FX FX
MAC MAC il
IRy T g 2 ALY 7

® Chrome &ENn /=
= TLS DHE RSA WITH AES 128 GCM_SHA256

nAECE
" DHE |3 — /N TS /N X—4 A= 2DHEE

10

AT T4

" ECDHE #EE U -
" ZNIF1090 TR
" TLS T%® ECDHE Z#F|HBJgEIC U I

= 32D Firefox &MEN T
" 5535 A Chrome EBHENS

)

Rl EHBIRD/INT XA =Y DRTEIFFE
B L WIKT A= [CFERIDTWVNT WS
= TLS Tld. BARIZXRMEL, RET DT
=" HTTP/2 Tld P256 (RE 256y N) ZfES

=128 v k DE : TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256
" IEHOHEIE. REOFEDHERE

11

CREREA

"I 7 RNAT VT — RESERITORBITEG) £ D

Ew k 80 | 112 | 128 | 192 | 256
HERES | 80 | 112 | 128 | 192 | 256
RSA 1024 | 2048 | 3072 | 7680 | 15360
DH 1024 | 2048 | 3072 | 7680 |15360
TBHEIRIES | 160 | 224 | 256 | 384 | 512
Ny 23 160 | 224 | 256 | 384 | 512

" HTTP/2 DEK
= TLS ECDHE_RSA WITH_AES 128 GCM_SHA256
P256

12

BXE AL v R

13

HE

WebT —/\n53

14

17V D DDFE

Z7OtA

v
loop {

req = receiveRequest;

rsp = application reg;

sendResponse rsp;

}

A7 AF

s BBUDOSLWVW—EROI—RINEITS
s —DODI7 UHAERL TULRL

15

"On the duality of operating
system structures”, 1978

AR RNAYyE—=I /Ny VD)
ALy RM(ZOEAR—=)EWFTH D

16

OSAL v RZ{E-> TEHDGE I

eee Oee

v vV v v v

OSALw R OSAL vk
aAr AF
s fl S BBLOLWI—RZEBIHETES
BHOAT7 & FHTES

R COSAL Y ROYIDEZNZHEUIEL

17

"Why Threads Are A Bad Idea", 1996

OS ALy REFy RkOvIC
fa D ?<&%%@m

RESZITARYNTH D

18

ARV SREZEE > TERDIGE I

H
v

H
V

H
v

ee @}‘ oee

I
%

H
v

|
|
|
REEEER 1

Q

ALNZE

Ry RN\ RZS

|
|
|
REEER i

Q

ALNZE

RY RNV ERS

AF

A

mFl &

A7 D4kpEZ5|=2HES

l@;&@]) ZFIBT BICE prefork U TR—h&2HB

"R

B@EL D&

WI—RKANEDEL
= prefork DR = - B X T HV7R 0

(L— M7 & DEFEHE L LY

19

"Why Events Are A Bad Idea", 2003

£ Ry N ERE SIS & REEETEA

7N

HEAL Y FEEFBEOYR— D

o

20

BREAL Y N2> TEHDGEICK L

eee 0O@e

v v v v \
Q ranzE | | (Q AuhzE
A7 m

s fl S BBLOLWI—RZEBIHETES
s il A7 DMEREZIIEHES

21

BEDI)7AT7 Y N ZRORMDFIE D

7247 b—D2REEHFHAOI—-RHIPEU
OS AL vk | —ERODI-FZFITD

(K=

T4 7 —D2RBEEHHADOI—RKRNRELS
ARy NERE) | O— REDM LIKEE S

=3

US54 T h—DBEEHBDI—RARL
BEALY R —BEROI-—REZF3
=R

22

Warp

23

WAI & Warp

HTTP server

Mighty

Logger |) Lockless algorithm

WAI (Web Application Interface)

Request -> IO Response

Scheduling | HTTP engine
Per-conn buffer \":j Warp
New parser
Concurrent Libraries Lock striping
Muticore IO Manager Per-core dispatcher
Scalable event regist
Many bug fixes ’\}j GHC RTS

24

Mio: A High-Performance Multicore I0 Manager for GHC

Andreas Voellmy Junchang Wang
Paul Hudak

Yale University, Department of Computer Science

andreas.voellmy@yale.edu
junchang.wang@yale.edu
paul.hudak@yale.edu

Abstract

Haskell threads provide a key, lightweight concurrency abstrac-
tion to simplify the programming of important network applica-
tions such as web servers and software-defined network (SDN)
controllers. The flagship Glasgow Haskell Compiler (GHC) iniro-
duces a run-time system (RTS) to achieve a high-performance mul-
ticore implementation of Haskell threads, by introducing effective
components such as a multicore scheduler, a parallel garbage col-
lector, an IO manager, and efficient multicore memory allocation.
Evaluations of the GHC RTS, however, show that it does not scale
well on multicore processors, leading to poor performance of many
network applications that try to use lightweight Haskell threads. In
this paper, we show that the GHC IO manager, which is a crucial
component of the GHC RTS, is the scaling bottleneck. Through a

Kazuhiko Yamamoto

I1J Innovation Institute Inc.
kazu@iij.ad.jp

1. Introduction

Huskell threads (also known as green threads or user threads) pro-
vide a key abstraction for writing high-performance, concurrent
programs [16] in Haskell [12]. For example, consider a network
server such as a web server. Serving a web request may involve
disk I0s to fetch the requested web page, which can be slow. To
achieve high performance, web servers process other requests, if
any are available, while waiting for slow disk operations to com-
plete. During high load, a large number of requests may arrive dur-
ing the [0s, which gives rise to many requesis in progress con-
currently. A naive implementation, using one native thread (i.e.
OS thread) per request would lead to the use of a large number
of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In con-

25

The Performance of

wa I"p Open Source Applications
Speed, Precision, and a Bit of Serendipity
Kazu Yamamoto,

Michael Snoyman, and Andreas Voellmy

Warp is a high-performance HTTP server library written in Haskell, a purely functional programming
language. Both Yesod, a web application framework, and mighty , an HTTP server, are implemented
over Warp. According to our throughput benchmark, mighty provides performance on a par with

nginx . This article will explain the architecture of Warp and how we achieved its performance. Warp
can run on many platforms, including Linux, BSD variants, Mac 0S8, and Windows. To simplify our
explanation, however, we will only talk about Linux for the remainder of this article.

Network Programming in Haskell

Some people believe that functional programming languages are slow or impractical. However, to the
best of our knowledge, Haskell provides a nearly ideal approach for network programming. This is
because the Glasgow Haskell Compiler (GHC), the flagship compiler for Haskell, provides lightweight
and robust user threads {sometimes called green threads). In this section, we briefly review some

26

Warp T®D HTTP/1.1 & HTTP/2

HTTP/1.1 HTTP/2
A)=y Z B U—JK
WAI 7 7 WAI 7 7Y
AR 3V T l T l
[#Hﬁ] [%ﬁj [@rﬁ] [%ﬂj
WAL 7 7Y v ’
A
Y
[i] [@17 j
) i Ax7>3ay
\
HTTPE K HTTPIGE BRI L—L4 REZ L—LA

27

ZRORE

= TLS O

" ABFEDOA N —Y VT BEATIG
YA —

sHTTPR2 D7 ZA4AY T«

28

BEin

= [|J Technical WEEK 2014 TEEBEUZX
= 20145F11826H 14:40 ~ 15:30
)L F A7 FROSFULS TR Haskellh 5 B 2 5 1H5R

29

