48.
Statistical Semantics:#J
Statistical Semantics is the study of "how the
statistical patterns of human word usage can be
used to figure out what people mean, at least to
a level sufficient for information access”(ACL
wiki)
! ŹŴƄŇ:Óǔ°76:IJè¢7ÎŃJ+:Ň:
ÊůPăL
! ƚøGhz{}ibf76:¯¹JML
9:
52.
Principle of compositionality (Frege1892]
… the meaning of a complex expression is determined by
the meanings of its constituent expressions and the rules
used to combine them (wikipedia
74.
ħăđƫ (1/3)
! [Pustejovsky95] James Pustejovsky.
The Generative Lexicon. MIT Press.
! [·¦05] ·¦ǍƆ.
(4+$. N%ư
! [Pustejovsky05] James Pustejovsky.
Introduction to Generative Lexicon. Foundations of
SemanticsƩĺ´ē.
http://www.cs.brandeis.edu/~jamesp/classes/LING130/
! [ě06] ěƲë.
Generative Lexicon2. Ɛ:ğNJÍ:ŏÌƈ
;8
75.
ħăđƫ(2/3)
! [Cimiano+07] Philipp Cimiano, Johanna Wenderoth.
Automatic Acquisition of Ranked Qualia Structures from the
Web. ACL2007
! [ĻŖ+12] ĻŖƨ, ·ť, ěƲë.
(4$
(!'&)
76.
77.
.
0. NLP2012.
! [Mitchell+08] Jeff Mitchell, Mirella Lapata.
Vector-based Models of Semantic Composition. ACL2008.
! [Socher+12] Richard Socher, Brody Huval, Christopher D.
Manning, Andrew Y. Ng.
Semantic Compositionality through Recursive Matrix-Vector
Spaces. EMNLP2012.
;9
78.
ħăđƫ(3/3)
! [Cruys+13] Tim Van de Cruys, Thierry Poibeau, Anna Korhonen.
A Tensor-based Factorization Model of Semantic
Compositionality. NAACL2013.
! [Kalchbrenner+14] Nal Kalchbrenner, Edward Grefenstette, Phil
Blunsom.
A Convolutional Neural Network for Modelling Sentences.
ACL2014.
! [Zelier+14] Matthew D. Zeiler, Rob Fergus.
Visualizing and Understanding Convolutional Networks.
ECCV2014.
! [Tsubaki+13] Masashi Tsubaki, Kevin Duh, Masashi Shimbo,
Yuji Matsumoto.
Modeling and Learning Semantic Co-Compositionality through
Prototype Projections and Neural Networks. EMNLP2013
;: