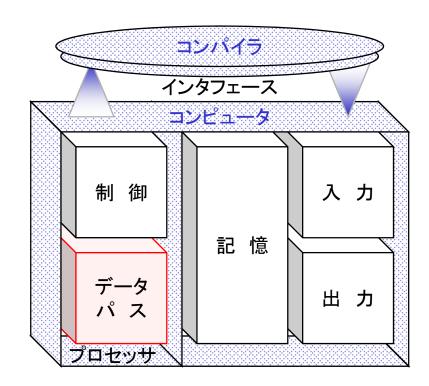
算術論理演算II ~乗除算·浮動小数点演算~

(株)日立製作所 マイクロデバイス事業部 Micro Device Division, Hitachi Ltd.

> 川下 達也 Tatsuya Kawashimo

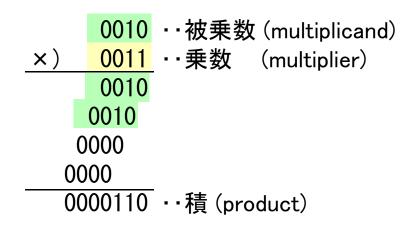
本日の授業の内容

- ① 乗算
- 2 除算
- ③ 浮動小数点とその演算



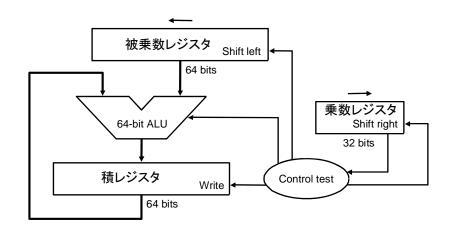
乗算

·加算より複雑 シフトと加算を使って乗算を実現



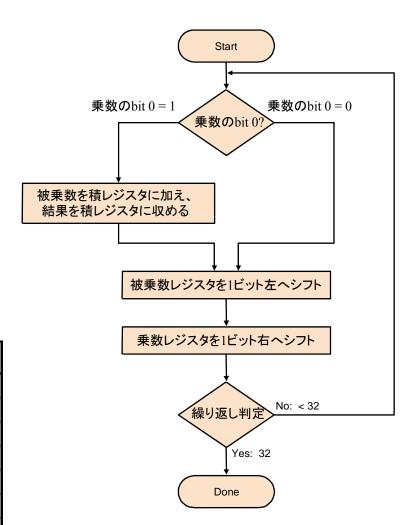
- ·取り上げた乗数の数字が1の場合は、被乗数の値を 適切な位置に記入
- ・取り上げた乗数の数字が0の場合は、0を記入

乗算アルゴリズムとハードウエアの第1のバージョン

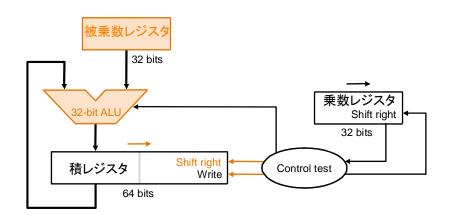


例題) 0010 x 0011

Step	処理	乗数	被乗数	積
0	初期値	0011	0000 0010	0000 0000
1	加算	0011	0000 0010	0000 0010
	シフト	0001	0000 0100	0000 0010
2	加算	0001	0000 0100	0000 0110
	シフト	0000	0000 1000	0000 0110
3	シフト	0000	0001 0000	0000 0110
4	シフト	0000	0010 0000	0000 0110

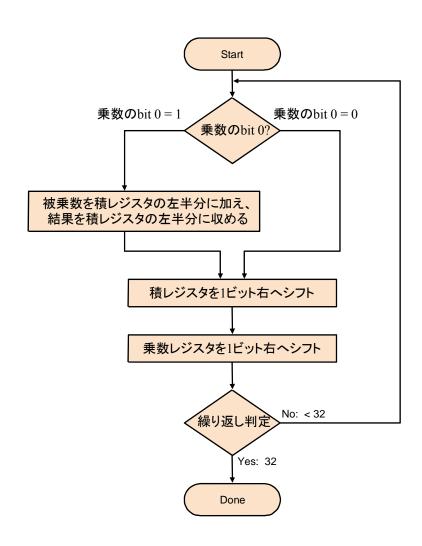


第2のバージョン



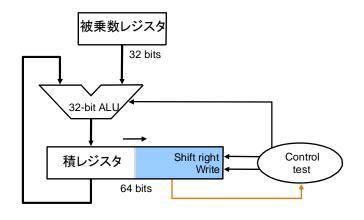
例題) 0010 x 0011

Step	処理	乗数	被乗数	積
0	初期値	0011	0010	0000 0000
1	加算	0011	0010	0010 0000
	シフト	0001	0010	0001 0000
2	加算	0001	0010	0011 0000
	シフト	0000	0010	0001 1000
3	シフト	0000	0010	0000 1100
4	シフト	0000	0010	0000 0110



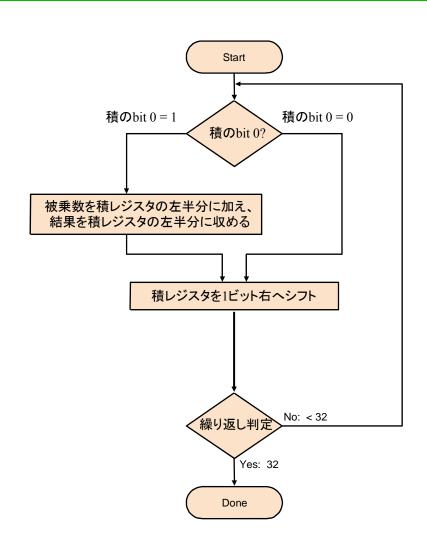
最終バージョン

積レジスタの右半分を乗数レジスタとする



例題) 0010 x 0011

Step	処理	被乗数	積
0	初期値	0010	0000 0011
1	加算	0010	0010 0011
	シフト	0010	0001 0001
2	加算	0010	0011 0001
	シフト	0010	0001 1000
3	シフト	0010	0000 1100
4	シフト	0010	0000 0110



Boothのアルゴリズム

Andrew D. Booth, "A signed binary multiplication technique" (1951)

Boothのアルゴリズム

乗数の1が連続するビット列で

開始ビット"1"で減算

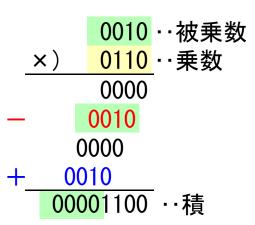
途中ビット"1"で加減算せず

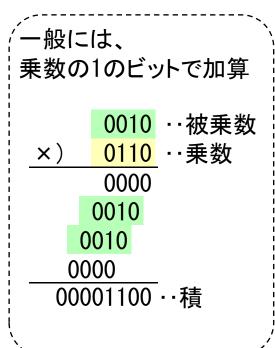
終了ビット "1"の次のビット "0"で加算

$$0010 \times 0110 = 0010 \times (-0010 + 1000)$$

連続した1の場合に高速 0110を2nの和に変換

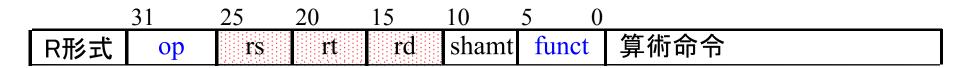
他にも Wallace Treeなどの 方式あり





MIPSにおける乗算

R (Register)形式



(1) mult rs, rt

```
0 rs rt 0 0 24
```

Hi, Lo レジスタに符号付き64bitの積が格納 (2) multu rs, rt

```
0 rs rt 0 0 25
```

Hi, Lo レジスタに符号なし64bitの積が格納

Hi, Loレジスタ

Hi, Loレジスタ: 乗算結果 (64bit)を格納。特殊レジスタ

31	25	20	15	10	5 0	
R形式 op	rs	rt	rd	shamt	funct	算術命令

(1) mfhi rd (move from hi)

0	0	0	rd	0	10
))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)	10

Hiレジスタの値をrdレジスタへ移送

(2) mflo rd (move from lo)

0	0	0	rd	0	12
---	---	---	----	---	----

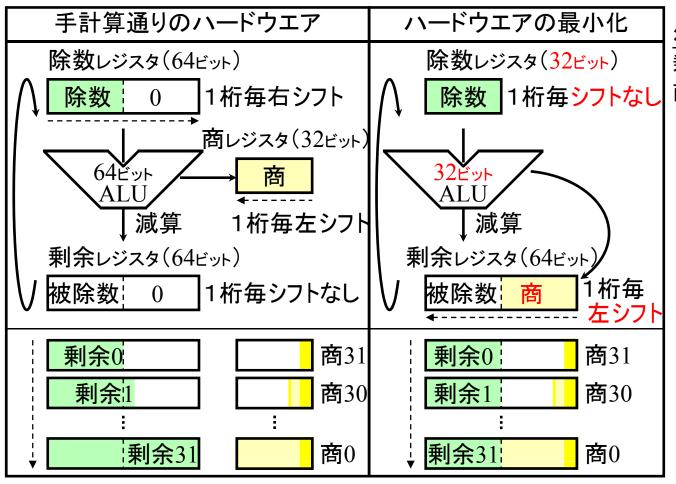
Loレジスタの値をrdレジスタへ移送

- (3) mthi rd (move to hi)
- (4) mtlo rd (move to lo)

除算

コンピュータでの除算

被除数から除数を減算し、剰余>0なら商の第0ビット=1



符号付き除算

剰余の符号=被除数の符号 商の符号=被除数と除数が 同符号なら正 異符号なら負

 $(+7) \div (+2) = +3 余り + 1$

 $(+7) \div (-2) = -3 余り + 1$

 $(-7) \div (+2) = -3$ 余り-1

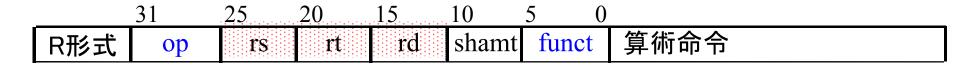
 $(-7) \div (-2) = +3$ 余り-1

高速化手法

- •SRT法
- •Newton-Raphson など

MIPSにおける除算

R (Register)形式



(1) div rs, rt

0 rs rt 0 0 26

Hiに剰余 Lo レジスタに商を格納。符号付き演算

(2) divu rs, rt

0 rs rt 0 0 27

符号なしの除算

浮動小数点形式

- 符号付き整数以外の数を表現する方法?
- 浮動小数点形式 符号(sign)、指数部(exponent)、仮数部(significant)

(-1)^S x 仮数部 x 2^{指数部}

◆IEEE 754浮動小数点規格

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
単精度	S	E0	E1	E2	E3	E4	E5	E6	E7	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23
	31	30	29	28	1 7	26	25	24	23	22	21	20	19	18	17/	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
倍精度	S	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20
	F21	F22	F23	F24	F25	F26	F27	F28	F29	F30	F31	F32	F33	F34	F35	F36	F37	F38	F39	F40	F41	F42	F43	F44	F45	F46	F47	F48	F49	F50	F51	F52

- 単精度(single precision) 浮動小数点形式 -> 32bit
 倍精度(double precision) 浮動小数点形式 -> 64bit 符号 指数部 仮数部
- 仮数部の先頭の1は、Fnに表現されない(暗黙の1)
- 仮数を1.xxxxxx(2進数)で表現 -> 正規化数
- 指数部にゲタ(bias)、ゲタは単精度で127, 倍精度で1023

指数部はunsigned number!!

$$(-1)^S \times (1 + F1 \times 2^{-1} + F2 \times 2^{-2} + F3 \times 2^{-3} +) \times 2^{(指数部 - bias)}$$

浮動小数点で扱う数

※ 単精度の場合 (bias=127)

項目	符号	指数 (exp)	仮数 (frc)	意味
正規化数	S	0001~	frc	$(-1)^{S} \times (1.\text{frc}) \times 2^{(\text{exp-bias})}$
		1110		
		(1 ~ 254)		
非正規化数	S	0000 (0)	frc (≠0)	$(-1)^{S} \times (0.\text{frc}) \times 2^{(1-\text{bias})}$
0	S	0000 (0)	All 0	+0, -0 の2種類
無限大	S	1111 (255)	All 0	+∞, -∞の2種類
NaN (Not a Number)	S	1111 (255)	frc (≠0)	無効演算を行った時の結果 意図的に割込を入れたい場合
(110t a 11ullioci)				

◎例外

- •オーバーフロー:指数部が上限を超えた場合
- ・アンダーフロー: 指数部が正規化数の下限を超えた場合
- ・ゼロ除算: 非0の数を0で割った場合
- ・無効演算: $\infty \times 0$ 、 $\infty \infty$ 、 $\infty \div \infty$ 、 $0 \div 0$ 、負数の平方根など

下図の単精度浮動小数点を10進数に変換

S	E0	E1	E2	E3	E4	E5	E6	E7	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$(-1)^1 \times (1 + 0.25) \times 2^{(129 - 127)}$$

= -1.25×2^2
= -1.25×4
= -5.0

数値-0.7510を単精度浮動小数点で表現

$$-0.75_{10} = -(0.5 + 0.25)_{10}$$

$$= -0.11_2 \times 2^0$$

$$= -1.1_2 \times 2^{-1}$$

$$= (-1)^1 \times 1.1_2 \times 2^{(126-127)}$$

S	E0	E1	E2	E3	E4	E5	E6	E7	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	B F19	F20	F21	F22	F23
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	,							,																							
	`				<u> </u>			_																							
				1	26																										

浮動小数点加算

F1: S1 EXP1 FRC1

F2: S2 EXP2 FRC2

(1) 析合わせ: 指数部が同じになるように仮数部をシフト

F1=
$$(-1)^{S1}$$
 x $(1.FRC1)$ x $2^{(EXP1 - bias)}$
F2= $(-1)^{S2}$ x $(1.FRC2)$ x $2^{(EXP2 - bias)}$

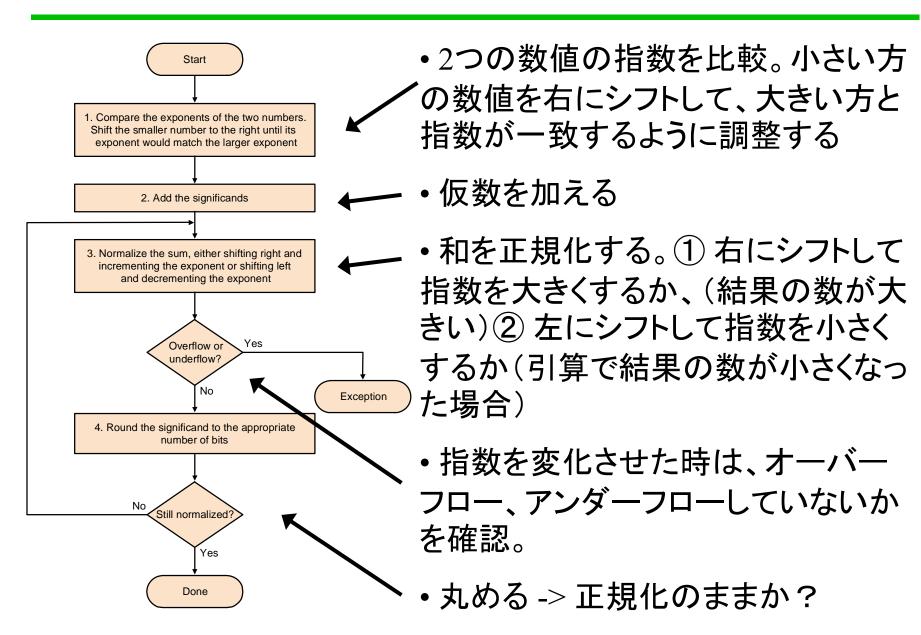
$$=(-1)^{S2} \times (0.0..01FRC2) \times 2^{(EXP1 - bias)}$$

(EXP1-EXP2)桁シフト (EXP1>EXP2の場合)

- (2)仮数部の加算(符号が異なる場合は減算)
- (3)正規化・まるめ

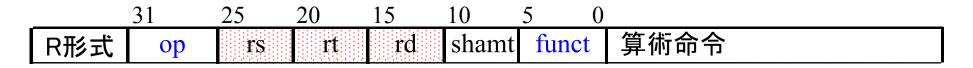
F3=
$$(-1)^{S3}$$
 x $(0.0..01FRC3)$ x $2^{(EXP3 - bias)}$
= $(-1)^{S3}$ x $(1.FRC3)$ x $2^{(EXP3 - SFT - bias)}$

浮動小数点加算



MIPSにおける浮動小数点演算

R (Register)形式



(1) add.s Fd, Fs, Ft

17 0 Ft Fs Fd 0

単精度の加算 Fd = Fs + Ft

(2) add.d Fd, Fs, Ft

17 1 Ft Fs Fd 0

倍精度の加算 Fd = Fs + Ft

\$f0 - \$f31

32bitのレジスタ

倍精度の場合は

2つ一組で使う。

\$f0, \$f20

ように、偶数レジ

スタで指定