
JVM at Google
Jeremy Manson

Java at Google

● Large number of 0s of Java devs/code
● What can JDK/JVM level technologies to do help?
● At the very least, we can support them when things go wrong
● And hopefully, we find time to do something that they notice, too

● Built a JDK team at Google
● Deploy, maintain and enhance JDK/JVM
● Used by Gmail, Google+, Docs, Blogger, Build system, AdWords…
● And many, many others!

We have to do everything

● Best playground a language enthusiast could want
○ But got to keep the engines going…
○ No matter what needs doing, we do it!

● In that spirit, I will clumsily lurch from topic to topic
○ This closely resembles my weekdays

● Last year: Static analysis, monitoring, GC
● This year: Native code, threading, static analysis (maybe)

Native Code
Interoperation

C++ and Java: Why do we care?

● Lots of talks about JNI / JNA / JNR / Packed Arrays...
○ Let’s talk about the whys.
○ Goes beyond libc / syscalls

● Performance / predictability can be an issue
○ Hey, maybe you need a 2^32 array

● Infrastructure often in C++, frontend / business logic in Java
○ Native code is a lingua franca
○ If you need code shared across Go and Python and Java, you write it

in C/C++

Obvious Engineering-Level Challenges

● Mostly covered in the FFI workshop yesterday
● Data layout is different
● Object lifetime in Java is a dubious notion
● There is no such thing as a pointer in Java
● JNI is slow
● Mismatches between memory models

● Project Panama is there to help us (hopefully)

Lots and lots of workflow pain points

● Different assumptions about runtime environment
○ How do you install a signal handler? What do TIDs look like?

malloc?
● Different best practices

○ C++ users stop their applications on error
● Debugging is painful (mixed stacks, core files…)
● Monitoring is painful

○ Even hard to explain to users why Java and native heap are different!
● Communities are very wary of each others’ languages
● Automatic wrapping state of the art is SWIG

○ ...which doesn’t really understand C++

What do we do?

● Many users have separate C++ / Java applications; talk via RPC

● Use existing technology to aid in production / deployment
○ Heavily reliant on Launchers / Invocation API, JEP 178-alike

● Adjust our tooling to deal with the fact that mixed mode is painful…
○ Debugging
○ Monitoring

Debugging

● State of the art - attach two debuggers, flip between them

This is a clickable link to a YouTube video:

http://www.youtube.com/watch?v=L8rRE5C6GS0

Dynamic Analysis

● Our performance analysis tools have to understand both
○ Distinguish between Java and native heap analysis
○ Produce CPU profiles unified across both
○ Adjusted various stack trace mechanisms in JVM to provide mixed-

mode stack traces
○ To track heap usage, need to instrument malloc/free and Java heap

allocation
● Our valgrind-alike has to work with JNI

○ All modules need to use its instrumented malloc / free
○ … but JVM has lots of memory leaks
○ http://clang.llvm.org/docs/AddressSanitizer.html

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/AddressSanitizer.html

Dynamic Analysis: Data Race Detection

● Have a data race detector for native code
○ https://code.google.com/p/thread-sanitizer/

● What happens when synchronization for native code is done in
Java?
○ Finalizers are very often used to free native memory
○ Java locks are used to protect native memory

● Need to make tools aware of each other…
○ Working on integration

● Starting down this path towards a complete data race checker
○ Hopefully, we’ll be talking about that some other time

https://code.google.com/p/thread-sanitizer/
https://code.google.com/p/thread-sanitizer/

But really, I just wanted to talk about...

Threads
Very experimental
Will stop abruptly at where we are
today

What Kind of Programs do we Care About?

Client BackendFrontend

How do Servers Handle Requests: Synchronous

Every time a request comes in, spawn a thread to deal with it.
● If the thread has to do more I/O, it blocks.
● Referred to as “synchronous”

Result handler(Request req) {
 Result a = rpc(req.id);
 Result b = rpc(a);
 return b;
}

How do Servers Handle Requests: Synchronous

Pros:
● Straight line code, ultra simple
● Good locality

Cons:
● In large servers, spawns a lot of threads
● With a lot of (unpredictable) contention and context switching
● And it turns out that thread scheduling is really expensive
● And a lot of thread stack usage
● Harder to parallelize individual requests

How do servers handle requests: Asynchronous

● Every time a request comes in, dispatch to a thread pool
○ If server needs to block on I/O, register a callback that is run when

blocking operation is done

void handler(Request req, Response res) {
 rpc(req.id, (Result a) ->
 rpc(a, (Result b) ->
 res.finish(b)));
}

How do servers handle requests: Asynchronous

● Pros:
○ Scales really well - can have ~1 thread per core

● Cons:
○ Need a state machine to handle a request
○ Debuggers stink: a stack trace doesn’t tell you anything, can’t walk

through code
○ Non-multithreaded requests are now multithreaded
○ Lousy locality - resources are smeared across threads

● Want simplicity of synchronous, performance of asynchronous
● Can’t the language do something complicated to take care of it?

● Well, sure, lots of programming languages have solved it.
● Write the code synchronously
● Instead of blocking and letting the OS decide what to schedule,

explicitly transfer control to something else.
○ Basically, take yield / coroutines / call/cc and turn them multithreaded
○ Green threads / Goroutines / Fibers, it’s all the same stuff

● Add some form of user scheduling to that
○ Probably involving queues / channels

This is really awful!

This is usually a big win

● Less memory usage from threads
○ ~1M stacks * 10K pending requests == a lot

● Pass through the OS scheduler less
○ 10K threads * trying to schedule stuff == high variance

● If the user scheduler is careful, better locality
○ Network thread communicates over a socket
○ Passes directly to the thread that owns the socket

Approaches

● ~80 bazillion prior JVMLS talks on continuations
● When you block, save state, switch to something else
● Need some user code that tells you what to switch to.
● There is a thread management component

● Could use bytecode rewriting to break your code around
statements that might block
○ Doesn’t work for non-Java code
○ Wait for it...

Build support into JVM?

● Without language support, have save() and resume() API
○ enter() means start-the-bit-you-might-save
○ save() saves everything since enter()
○ resume() resumes it (maybe passing back a param)
○ Instrument blocking calls either via rewriting or by hand

● See Hiroshi Yamauchi’s 2010 JVMLS talk
https://wikis.oracle.com/display/mlvm/StackContinuations

Build support into JVM?

Pros:
● Debugging is better - Java stacks make sense
● Memory consumption couple of orders of magnitude better

○ 10K threads == 1.2G RSS 10K continuations = 30M RSS
● Performance comparable with async

○ A couple of percent off with deeper stacks, attributable to the
experimental nature of patch

Cons:
● Still doesn’t work for non-Java code.

○ Have to instrument park / unpark, epoll, everything that blocks

Go Deeper?

● Do it in the kernel
○ All you need to do is swap out a bunch of registers
○ If you know what you want to schedule next, no scheduler overhead at

all.

● Very simple API, with just three operations:
○ switchto_wait(): gives up control
○ switchto_resume(tid): resume tid
○ switchto_switch(tid): transfer control to tid

Go Deeper?

● Works for JNI
○ Don’t need to instrument JVM’s blocking operations anymore
○ Native thread identity / tids are maintained

● Context switches for handoffs are now ~150-200ns
○ Kernel call is 10s of ns
○ Scheduling is expensive and unnecessary with switch()
○ Don’t have two-step 1) wakeup other thread, 2) go to sleep

■ Which means other thread is usually scheduled on other CPU

Go Deeper?

● Debugging is still good
○ A thread stack is a thread stack
○ Existing code “just works”

● Locality is nicer
○ Can switchto the context that will need the resources you are using (e.

g., socket)
● Don’t need a nanny scheduler

○ (BTW, this is what makes it different from Windows UMS)
● What about thread stacks?

Hmm… What about thread stacks?

● Return RAM to system forcibly
● 10K threads; 1 thread-per-core, 10K continuations
● Okay, but still not great

Future Work: Make this make sense

● Not a solution for everyone (unless Linux picks up switchto patch)
● Easy to get comparable performance:

○ Have a dedicated green thread
○ Swap out registers on demand

● Cactus stack could improve memory situation
● Also, language support would be nice
● This is a 20% project for me

● Now I’m stopping abruptly.
● No great morals to be found here. Questions?

Static Analysis Update

Error Prone Update

● Our easy-to-extend static analysis bug checker
● Works at compile time, easy to integrate into build systems
● Really careful about error messages and false positive rate
● Easy to write new checks
● No dependencies on particular IDEs
● Can write tools that pass over entire code bases and report

problems easily

● Coming features:
● Checking @GuardedBy
● Dataflow analysis extensions in progress

Error Prone is pretty easy

Built on top of Java AST matching API:

But you can never be too easy!

A scalable, example-based analysis tool - built on top of error-prone:

static class ToCharArrayIndex {
 @BeforeTemplate public char toCharArrayAt(String str, int index) {
 return str.toCharArray()[index];
 }
 @AfterTemplate public char charAt(String str, int index) {
 return str.charAt(index);
 }
}

Can be used for writing checks, doing refactoring, automating code
reviews...

Refaster

I know I promised, but...

Shows up in code review...

Even more cool...

Hit the “show” button and...

About to change subjects abruptly...

Questions?

Links:
Error Prone: https://code.google.com/p/error-prone/
Refaster (work in progress): https://github.com/google/Refaster

https://code.google.com/p/error-prone/
https://github.com/google/Refaster

All Done!

