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What’s hot in ML: Representation Learning

Feature Engineering

Learn good features/representations for classification tasks, e.g.
image and speech recognition.

Sparse representations, low dimensional hidden structures.



What’s hot in ML: Optimization Methods

Convex Optimization

Fast convergence for non-smooth (and not strongly convex) functions.

Online learning: variance reduction for stochastic gradient methods.

Non-convex problems

When can we hope to reach global optimum?

What problem structures make this possible?

Can we have fast convergence?



Challenges in Feature Learning

In practice

Deep learning has provided impressive gains.

Parameter training challenging and not stable. h1 hk

x1 x2 xd

σ(·)

Theory

Representational power of networks.

Guaranteed learning of probabilistic models with latent variables?

Maximum likelihood is NP-hard.

Practice: EM, Variational Bayes have no consistency guarantees.

Efficient computational and sample complexities?
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Linear Neural Networks

Observed sample x = Ah.

h is hidden variable and A is dictionary.

x ∈ R
d, h ∈ R

k and A ∈ R
d×k.

k

d
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x1 x2 xd

Learning through SVD

Pairwise moments: M2 = E[xx⊤] = AE[hh⊤]A⊤.

SVD: M2 = UΛU⊤: a valid linear representation.

Learning through SVD: cannot learn overcomplete representations.
(k > d) learnable?

SVD cannot enforce sparsity, non-negativity etc.
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Learning Overcomplete Dictionaries

=

X ∈ R
d×n A ∈ R

d×k H ∈ R
k×n

Linear model: X = AH, both A,H unknown.

Sparse H: each column is randomly s-sparse

Overcomplete dictionary A ∈ R
d×k: k ≥ d.

Incoherence: max
i 6=j

|〈ai, aj〉| ≈ 0. (satisfied by random vectors)

“Learning Sparsely Used Overcomplete Dictionaries” by A. Agarwal, A., P. Jain, P. Netrapalli,

R. Tandon. COLT 2014.



Intuitions: how incoherence helps

Each sample is a combination of dictionary atoms: xi =
∑

j hi,jaj .

Consider xi and xj s.t. they have no common dictionary atoms.

What about |〈xi, xj〉|?
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Intuitions: how incoherence helps

Each sample is a combination of dictionary atoms: xi =
∑

j hi,jaj .

Consider xi and xj s.t. they have no common dictionary atoms.

What about |〈xi, xj〉|?

Under incoherence: |〈xi, xj〉| ≈ 0.

Construction of Correlation Graph

Nodes: Samples x1, . . . , xn.

Edges: |〈xi, xj〉| > τ for some threshold τ .

How does the correlation graph help in dictionary learning?



Correlation Graph and Clique Finding

Main Insight

(xi, xj): edge in correlation graph ⇒ xi and xj have at least one
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Correlation Graph and Clique Finding
Ŝ1 Ŝ2Bad

Good

Good

Main Insight

(xi, xj): edge in correlation graph ⇒ xi and xj have at least one
dictionary element in common.

Consider a large clique: a large fraction of pairs have exactly one
element in common.

How to find such a large clique efficiently? Start with a random edge.

Refinement through alternating minimization.



Experiments on MNIST

Original Reconstruction

Learnt Representation
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Warm-up: PCA on Gaussian Mixtures

Mixture of Spherical Gaussians.

PCA on pairwise moments: span of mean
vectors.

Learning Mean Vectors through Spectral Clustering

Project samples on to span of mean vectors.

Distance-based clustering (e.g. k-means).



Warm-up: PCA on Gaussian Mixtures

Mixture of Spherical Gaussians.

PCA on pairwise moments: span of mean
vectors.

Learning Mean Vectors through Spectral Clustering

Project samples on to span of mean vectors.

Distance-based clustering (e.g. k-means).

Failure to cluster under large variance.

Learning Gaussian Mixtures Without Separation Constraints?
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How to learn the component means (not just its span) without
separation constraints?

PCA is a spectral method on (covariance) matrices.

◮ Are higher order moments helpful?
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Beyond PCA: Spectral Methods on Tensors

How to learn the component means (not just its span) without
separation constraints?

PCA is a spectral method on (covariance) matrices.

◮ Are higher order moments helpful?

What if number of components is greater than observed
dimensionality k > d?

◮ Do higher order moments help to learn overcomplete models?

What if the data is not Gaussian?

◮ Moment-based Estimation of probabilistic latent variable models?



Tensor Notation for Higher Order Moments

Multi-variate higher order moments form tensors.

Are there spectral operations on tensors akin to PCA?

Matrix

E[x⊗ x] ∈ R
d×d is a second order tensor.

E[x⊗ x]i1,i2 = E[xi1xi2 ].

For matrices: E[x⊗ x] = E[xx⊤].

Tensor

E[x⊗ x⊗ x] ∈ R
d×d×d is a third order tensor.

E[x⊗ x⊗ x]i1,i2,i3 = E[xi1xi2xi3 ].



Matrices vs. Tensors

M2 ≈
∑

i

λiui ⊗ vi

= + ....

Matrix M2 λ1u1 ⊗ v1 λ2u2 ⊗ v2



Matrices vs. Tensors

M2 ≈
∑

i

λiui ⊗ vi

= + ....

Matrix M2 λ1u1 ⊗ v1 λ2u2 ⊗ v2

M3 ≈
∑

i

λiui ⊗ vi ⊗ wi

= + ....

Tensor M3 λ1u1 ⊗ v1 ⊗ w1 λ2u2 ⊗ v2 ⊗ w2



Topic Modeling



Tensor Factorizations for Other Models

HMM

h1 h2 h3

x1 x2 x3

ICA

h1 h2 hk

x1 x2 xd

A

Latent Trees

x1 x2 x3 x4 x5

h1

h2 h3

Method of Moments: Analyze moment tensors under statistical models.

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.

Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.



Finding Hidden Communities in Networks

Pure Memberships

 

 

Mixed Memberships

 

 

Tensor methods can find overlapping communities in networks



Experimental Results

Friend
Users

Facebook

n ∼ 20, 000

Business
User
Reviews

Yelp

n ∼ 40, 000

Author
Coauthor

DBLP

n ∼ 1 million

Error (E) and Recovery ratio (R)

Dataset k̂ Method Running Time E R
Facebook(k=360) 500 ours 468 0.0175 100%
Facebook(k=360) 500 variational 86,808 0.0308 100%
.
Yelp(k=159) 100 ours 287 0.046 86%
Yelp(k=159) 100 variational N.A.
.
DBLP(k=6000) 100 ours 5407 0.105 95%

Huang, Niranjan, Hakeem and Anandkumar, “Fast Detection of Overlapping Communities via

Online Tensor Methods,” Preprint, Sept. 2013.



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts

1 Latin American Salvadoreno Restaurant 4.0 36

2 Gluten Free P.F. Chang’s China Bistro 3.5 55

3 Hobby Shops Make Meaning 4.5 14

4 Mass Media KJZZ 91.5FM 4.0 13

5 Yoga Sutra Midtown 4.5 31



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts

1 Latin American Salvadoreno Restaurant 4.0 36

2 Gluten Free P.F. Chang’s China Bistro 3.5 55

3 Hobby Shops Make Meaning 4.5 14

4 Mass Media KJZZ 91.5FM 4.0 13

5 Yoga Sutra Midtown 4.5 31

Bridgeness: Distance from vector [1/k̂, . . . , 1/k̂]⊤

Top-5 bridging nodes (businesses)

Business Categories

Four Peaks Brewing Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe

Pizzeria Bianco Restaurants, Pizza, Phoenix

FEZ Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix

Matt’s Big Breakfast Restaurants, Phoenix, Breakfast& Brunch

Cornish Pasty Co Restaurants, Bars, Nightlife, Pubs, Tempe
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Conclusion

Guaranteed Learning of Latent Variable Models

Guaranteed to recover correct model

Efficient sample and computational complexities

Better performance compared to EM, Variational
Bayes etc.

Tensor approach: mixed membership
communities, topic models, latent trees...

Sparsity-based approach: overcomplete models,
e.g sparse coding and topic models.
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http://newport.eecs.uci.edu/anandkumar/MLSS.html
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