# What's hot in Machine Learning?

#### **Anima Anandkumar**

U.C. Irvine

### What's hot in ML: Representation Learning







#### Feature Engineering

- Learn good features/representations for classification tasks, e.g. image and speech recognition.
- Sparse representations, low dimensional hidden structures.

# What's hot in ML: Optimization Methods

#### Convex Optimization

- Fast convergence for non-smooth (and not strongly convex) functions.
- Online learning: variance reduction for stochastic gradient methods.

#### Non-convex problems

- When can we hope to reach global optimum?
- What problem structures make this possible?
- Can we have fast convergence?

## **Challenges in Feature Learning**

### In practice

- Deep learning has provided impressive gains.
- Parameter training challenging and not stable.



### Theory

- Representational power of networks.
- Guaranteed learning of probabilistic models with latent variables?
- Maximum likelihood is NP-hard.
- Practice: EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities?

### **Outline**

Introduction

- 2 Representation Learning
- Tensor Methods for Guaranteed Learning
- 4 Conclusion

#### **Linear Neural Networks**

- Observed sample x = Ah.
- h is hidden variable and A is dictionary.
- $x \in \mathbb{R}^d$ ,  $h \in \mathbb{R}^k$  and  $A \in \mathbb{R}^{d \times k}$ .



#### Learning through SVD

- Pairwise moments:  $M_2 = \mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$ .
- SVD:  $M_2 = U\Lambda U^{\top}$ : a valid linear representation.
- Learning through SVD: cannot learn overcomplete representations. (k > d) learnable?
- SVD cannot enforce sparsity, non-negativity etc.

#### **Linear Neural Networks**

- Observed sample x = Ah.
- *h* is hidden variable and *A* is dictionary.
- $x \in \mathbb{R}^d$ ,  $h \in \mathbb{R}^k$  and  $A \in \mathbb{R}^{d \times k}$ .



### Learning through SVD

- Pairwise moments:  $M_2 = \mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top}$ .
- SVD:  $M_2 = U\Lambda U^{\top}$ : a valid linear representation.
- Learning through SVD: cannot learn overcomplete representations. (k > d) learnable?
- SVD cannot enforce sparsity, non-negativity etc.

### **Learning Overcomplete Dictionaries**



- Linear model: X = AH, both A, H unknown.
- Sparse *H*: each column is randomly *s*-sparse
- Overcomplete dictionary  $A \in \mathbb{R}^{d \times k}$ :  $k \geq d$ .
- Incoherence:  $\max_{i \neq j} |\langle a_i, a_j \rangle| \approx 0$ . (satisfied by random vectors)

<sup>&</sup>quot;Learning Sparsely Used Overcomplete Dictionaries" by A. Agarwal, A., P. Jain, P. Netrapalli,

### Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms:  $x_i = \sum_j h_{i,j} a_j$ .
- Consider  $x_i$  and  $x_j$  s.t. they have no common dictionary atoms.
- What about  $|\langle x_i, x_j \rangle|$ ?

### Intuitions: how incoherence helps

- Each sample is a combination of dictionary atoms:  $x_i = \sum_j h_{i,j} a_j$ .
- Consider  $x_i$  and  $x_j$  s.t. they have no common dictionary atoms.
- What about  $|\langle x_i, x_j \rangle|$ ?
- Under incoherence:  $|\langle x_i, x_i \rangle| \approx 0$ .

### Intuitions: how incoherence helps

- ullet Each sample is a combination of dictionary atoms:  $x_i = \sum_j h_{i,j} a_j$ .
- Consider  $x_i$  and  $x_j$  s.t. they have no common dictionary atoms.
- What about  $|\langle x_i, x_j \rangle|$ ?
- Under incoherence:  $|\langle x_i, x_j \rangle| \approx 0$ .

#### Construction of Correlation Graph

- Nodes: Samples  $x_1, \ldots, x_n$ .
- Edges:  $|\langle x_i, x_j \rangle| > \tau$  for some threshold  $\tau$ .

How does the correlation graph help in dictionary learning?





### Main Insight

•  $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.



### Main Insight

•  $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.



- $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.



- $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently?



- $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.



- $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.



- $(x_i, x_j)$ : edge in correlation graph  $\Rightarrow x_i$  and  $x_j$  have at least one dictionary element in common.
- Consider a large clique: a large fraction of pairs have exactly one element in common.
- How to find such a large clique efficiently? Start with a random edge.
- Refinement through alternating minimization.

# **Experiments on MNIST**

### Original



#### Reconstruction



#### Learnt Representation



### **Outline**

Introduction

- Representation Learning
- 3 Tensor Methods for Guaranteed Learning
- 4 Conclusion

### Warm-up: PCA on Gaussian Mixtures

- Mixture of Spherical Gaussians.
- PCA on pairwise moments: span of mean vectors.



- Project samples on to span of mean vectors.
- Distance-based clustering (e.g. *k*-means).





### Warm-up: PCA on Gaussian Mixtures

- Mixture of Spherical Gaussians.
- PCA on pairwise moments: span of mean vectors.



#### Learning Mean Vectors through Spectral Clustering

- Project samples on to span of mean vectors.
- Distance-based clustering (e.g. k-means).

\_\_\_\_\_

Failure to cluster under large variance.

Learning Gaussian Mixtures Without Separation Constraints?

- How to learn the component means (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
  - Are higher order moments helpful?

- How to learn the component means (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
  - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?

- How to learn the component means (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
  - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
  - ▶ Do higher order moments help to learn overcomplete models?

- How to learn the component means (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
  - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
  - ▶ Do higher order moments help to learn overcomplete models?
- What if the data is not Gaussian?

- How to learn the component means (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
  - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
  - ▶ Do higher order moments help to learn overcomplete models?
- What if the data is not Gaussian?
  - Moment-based Estimation of probabilistic latent variable models?

# **Tensor Notation for Higher Order Moments**

- Multi-variate higher order moments form tensors.
- Are there spectral operations on tensors akin to PCA?

#### Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$  is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1, i_2} = \mathbb{E}[x_{i_1} x_{i_2}].$
- For matrices:  $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$



#### Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$  is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$



### Matrices vs. Tensors



#### Matrices vs. Tensors





### **Topic Modeling**



k topics (distributions over vocab words). Each document  $\leftrightarrow$  mixture of topics. Words in document  $\sim$ <sub>iid</sub> mixture dist.



### **Tensor Factorizations for Other Models**



Method of Moments: Analyze moment tensors under statistical models.

"Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

# Finding Hidden Communities in Networks

Pure Memberships

Mixed Memberships





Tensor methods can find overlapping communities in networks

### **Experimental Results**







Facebook  $n \sim 20,000$ 

 $\begin{aligned} \text{Yelp} \\ n \sim 40,000 \end{aligned}$ 

 $n\sim 1$  million

### Error $(\mathcal{E})$ and Recovery ratio $(\mathcal{R})$

| Dataset         | $\hat{k}$ | Method      | Running Time | $\mathcal{E}$ | $\mathcal{R}$ |
|-----------------|-----------|-------------|--------------|---------------|---------------|
| Facebook(k=360) | 500       | ours        | 468          | 0.0175        | 100%          |
| Facebook(k=360) | 500       | variational | 86,808       | 0.0308        | 100%          |
|                 |           |             |              |               |               |
| Yelp(k=159)     | 100       | ours        | 287          | 0.046         | 86%           |
| Yelp(k=159)     | 100       | variational | N.A.         |               |               |
|                 |           |             |              |               |               |
| DBLP(k=6000)    | 100       | ours        | 5407         | 0.105         | 95%           |

Huang, Niranjan, Hakeem and Anandkumar, "Fast Detection of Overlapping Communities via

# **Experimental Results on Yelp**

#### Lowest error business categories & largest weight businesses

| Rank | Category       | Business                  | Stars | Review Counts |
|------|----------------|---------------------------|-------|---------------|
| 1    | Latin American | Salvadoreno Restaurant    | 4.0   | 36            |
| 2    | Gluten Free    | P.F. Chang's China Bistro | 3.5   | 55            |
| 3    | Hobby Shops    | Make Meaning              | 4.5   | 14            |
| 4    | Mass Media     | KJZZ 91.5FM               | 4.0   | 13            |
| 5    | Yoga           | Sutra Midtown             | 4.5   | 31            |

## **Experimental Results on Yelp**

#### Lowest error business categories & largest weight businesses

| Rank | Category       | Business                  | Stars | Review Counts |
|------|----------------|---------------------------|-------|---------------|
| 1    | Latin American | Salvadoreno Restaurant    | 4.0   | 36            |
| 2    | Gluten Free    | P.F. Chang's China Bistro | 3.5   | 55            |
| 3    | Hobby Shops    | Make Meaning              | 4.5   | 14            |
| 4    | Mass Media     | KJZZ 91.5FM               | 4.0   | 13            |
| 5    | Yoga           | Sutra Midtown             | 4.5   | 31            |

Bridgeness: Distance from vector  $[1/\hat{k},\ldots,1/\hat{k}]^{\top}$ 

#### Top-5 bridging nodes (businesses)

| Business             | Categories                                                              |
|----------------------|-------------------------------------------------------------------------|
| Four Peaks Brewing   | Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe               |
| Pizzeria Bianco      | Restaurants, Pizza, Phoenix                                             |
| FEZ                  | Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix |
| Matt's Big Breakfast | Restaurants, Phoenix, Breakfast& Brunch                                 |
| Cornish Pasty Co     | Restaurants, Bars, Nightlife, Pubs, Tempe                               |

### **Outline**

Introduction

- Representation Learning
- 3 Tensor Methods for Guaranteed Learning
- 4 Conclusion

#### **Conclusion**

#### Guaranteed Learning of Latent Variable Models

- Guaranteed to recover correct model
- Efficient sample and computational complexities
- Better performance compared to EM, Variational Bayes etc.
- Tensor approach: mixed membership communities, topic models, latent trees...
- Sparsity-based approach: overcomplete models, e.g sparse coding and topic models.







http://newport.eecs.uci.edu/anandkumar/MLSS.html