Chronic corticosterone exposure alters postsynaptic protein levels of PSD-95, NR1, and synaptopodin in the mouse brain. Julia W Cohen,Natalia Louneva,Li-Ying Han,Georgia E Hodes,Robert S Wilson,David A Bennett,Irwin Lucki,Steven E Arnold Synapse (New York, N.Y.)
65
2011
Show Abstract
Animal models provide compelling evidence that chronic stress is associated with biochemical and morphological changes in the brain, many of which are mediated by corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex and secreted in response to stress. To better characterize the effects of chronic corticosterone at the synaptic and subsynaptic level, we implanted three-month-old male C57B/6 mice with 2 × 5 mg corticosterone pellets (CORT group, n = 14), 21 day release formulation (20 mg/kg/day dose) or placebo pellets (Placebo group, n = 14), 21-day release formulation. After 20 days, brains were removed. One hemisphere was frozen for biochemical analysis by synaptosomal fractionation with Western blotting, and the other hemisphere was fixed for immunohistochemistry. Localization and expression levels for PSD-95, NR1, and synaptopodin proteins were assessed. Biochemical analysis revealed lower protein levels of PSD-95 (32% decrease, P < 0.001), NR1 (47%, P = 0.01), and synaptopodin (65%, P < 0.001) in the postsynaptic density subsynaptic fraction of the CORT group. Optical densitometry in immunohistochemically labeled sections also found lower levels of PSD-95 in synaptic fields of the dentate gyrus (PSD-95, 33% decrease, P < 0.001; NR1, 31%, P < 0.001; synaptopodin, 40%, P < 0.001) and the CA3 stratum lucidum (36%, P < 0.001, 40%, P < 0.001, and 35%, P < 0.001) of the CORT group. While mechanistic relationships for these changes are not yet known, we speculate that synaptopodin, which is involved in regulation of spine calcium kinetics and posttranslational modification and transport of locally synthesized proteins, may play an important role in the changes of PSD-95 and NR1 protein levels and other synaptic alterations.
| 21190219 |
Analysis of neuronal cell death in mammals. Marcello D'Amelio,Virve Cavallucci,Adamo Diamantini,Francesco Cecconi Methods in enzymology
446
2008
Show Abstract
Apoptosis, often defined as programmed cell death, plays a very important role in many physiologic and pathologic conditions. Therefore, detecting apoptotic cells or monitoring the cells progressing to apoptosis is an essential step in basic and/or applied research. Apoptosis is characterized by many biologic and morphologic changes of cells, for example, cytochrome c release from mitochondria, activation of caspases, DNA fragmentation, membrane blebbing, and formation of apoptotic bodies. On the basis of these changes, various assays have been designed to detect or quantify apoptotic cells. The goal of this chapter is to provide readers with a scientific guide to proven methods that highlight the current strategies for detecting apoptosis in the nervous system.
| 18603127 |
Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. Christopher S Rex, Ching-Yi Lin, Eniko A Kramár, Lulu Y Chen, Christine M Gall, Gary Lynch The Journal of neuroscience : the official journal of the Society for Neuroscience
27
3017-29
2007
Show Abstract
Brain-derived neurotrophic factor (BDNF) is an extremely potent, positive modulator of theta burst induced long-term potentiation (LTP) in the adult hippocampus. The present studies tested whether the neurotrophin exerts its effects by facilitating cytoskeletal changes in dendritic spines. BDNF caused no changes in phalloidin labeling of filamentous actin (F-actin) when applied alone to rat hippocampal slices but markedly enhanced the number of densely labeled spines produced by a threshold level of theta burst stimulation. Conversely, the BDNF scavenger TrkB-Fc completely blocked increases in spine F-actin produced by suprathreshold levels of theta stimulation. TrkB-Fc also blocked LTP consolidation when applied 1-2 min, but not 10 min, after theta trains. Additional experiments confirmed that p21 activated kinase and cofilin, two actin-regulatory proteins implicated in spine morphogenesis, are concentrated in spines in mature hippocampus and further showed that both undergo rapid, dose-dependent phosphorylation after infusion of BDNF. These results demonstrate that the influence of BDNF on the actin cytoskeleton is retained into adulthood in which it serves to positively modulate the time-dependent LTP consolidation process.
| 17360925 |
Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. Martin Gassmann, Hamdy Shaban, Réjan Vigot, Gilles Sansig, Corinne Haller, Samuel Barbieri, Yann Humeau, Valérie Schuler, Matthias Müller, Bernd Kinzel, Klaus Klebs, Markus Schmutz, Wolfgang Froestl, Jakob Heid, Peter H Kelly, Clive Gentry, Anne-Lise Jaton, Herman Van der Putten, Cédric Mombereau, Lucas Lecourtier, Johannes Mosbacher, John F Cryan, Jean-Marc Fritschy, Andreas Lüthi, Klemens Kaupmann, Bernhard Bettler The Journal of neuroscience : the official journal of the Society for Neuroscience
24
6086-97
2004
Show Abstract
GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surface trafficking and G-protein coupling. Consistent with these in vitro observations, the GABAB(1) subunit is also essential for all GABAB signaling in vivo. Mice lacking the GABAB(1) subunit do not exhibit detectable electrophysiological, biochemical, or behavioral responses to GABAB agonists. However, GABAB(1) exhibits a broader cellular expression pattern than GABAB(2), suggesting that GABAB(1) could be functional in the absence of GABAB(2). We now generated GABAB(2)-deficient mice to analyze whether GABAB(1) has the potential to signal without GABAB(2) in neurons. We show that GABAB(2)-/- mice suffer from spontaneous seizures, hyperalgesia, hyperlocomotor activity, and severe memory impairment, analogous to GABAB(1)-/- mice. This clearly demonstrates that the lack of heteromeric GABAB(1,2) receptors underlies these phenotypes. To our surprise and in contrast to GABAB(1)-/- mice, we still detect atypical electrophysiological GABAB responses in hippocampal slices of GABAB(2)-/- mice. Furthermore, in the absence of GABAB(2), the GABAB(1) protein relocates from distal neuronal sites to the soma and proximal dendrites. Our data suggest that association of GABAB(2) with GABAB(1) is essential for receptor localization in distal processes but is not absolutely necessary for signaling. It is therefore possible that functional GABAB receptors exist in neurons that naturally lack GABAB(2) subunits.
| 15240800 |
The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Cho, K O, et al. Neuron, 9: 929-42 (1992)
1992
Show Abstract
In CNS synapses, the synaptic junctional complex with associated postsynaptic density is presumed to contain proteins responsible for adhesion between pre- and postsynaptic membranes and for postsynaptic signal transduction. We have found that a prominent, brain-specific protein (PSD-95) enriched in the postsynaptic density fraction from rat brain is highly similar to the Drosophila lethal(1)discs-large-1 (dlg) tumor suppressor protein. The dlg protein is associated with septate junctions in developing flies and contains a guanylate kinase domain that is required for normal control of cell division. The sequence similarity between dlg and PSD-95 suggests that molecular mechanisms critical for growth control in developing organisms may also regulate synapse formation, stabilization, or function in the adult brain.
| 1419001 |