
I

I

II
,
II

•
II ,

Thinking Machines Technical. Report 86.15

II The Essential *Lisp Manual
Release 1, Revision 3 II

II
II With Progra.mming Examples

for the Connection Machine®System

April 1986

II
II
I
,

I

I

I

© 1986 Thinking Machines Corporation

"Connection Machine" is a registered trademark of Thinking Machines Corporation.

"*LISP" is a trademark of Thinking Machines Corporation.

"Symbolics" and "Symbolics 3600" are trademarks ofSymbolics, Inc.

"VAX" is a trademark of Digital Equipment Corporation.

II

II

III

•

III

II

II

Acknowledgments

II
II *LISP is a language designed to run on the Connection Machine system, Thinking Machines Cor­

poration's data parallel computer. The design and implementation of the language, as well as the
creation and revision of this manual, are the result of the efforts of many people at Thinking Ma­
chines. *LISP is the result of four years of language development. The original language, URDU,
was designed by Cliff Lasser in 1982 when the Connection Machine system was still in its design
phase at M.I.T. While the hardware was being built at Thinking Machines, URDU evolved into

II SIMPL. Based on many users' experiences with SIMPL on the Connection Machine hardware, *LISP
emerged.

II
• Cliff Lasser and Steve Omohundro were the primary designers and authors of the *LlSP lan­

guage and this manual.

II
• Other people who contributed to the design were Guy Blelloch, Brewster Kahle, JP Massar,

John Rose, and Jim Salem.

e Cliff Lasser and George Robertson implemented the hardware version.

• JP Massar implemented the simulator.

I • Janet MacLaren, JP Massar, and Charles Perkins edited and produc.ed this manual.

• Thanks also to Danny Hillis and Guy Steele for their continual support and assistance.

I
I
I
I
I
I

http:produc.ed

I

II

-
•
•
•
•
•

II

•
II

II
,

I

II

I

I

I

I

Contents

1 Introduction 1

1.1 The Use of Different Typefaces in This Manual 2

2 Connection Machine Computers and *LISP 3

2.1 The Connection Machine Computer Organization. 3

2.2 *LISP Terminology. 5

2.3 Overview of ESSENTIAL *LISP 7

2.3.1 Pvars .. 7

2.3.2 Selection 8

2.3.3 *Defun 10

2.3.4 Communication. 10

2.3.5 The Format of Function Definitions 11

2.4 Configuration Constants and Functions 11

2.4.1 The Size of the Machine . 11

2.4.2 Pre-defined Pvars . 12

3 The Pvar Data Structure 13

3.1 Constructing New Pvars 13

3.2 Determining the Type of a Pvar .. 14

3.3 Coercion of Pvar Types and Lengths 15

3.4 Allocating Local Pvars 15

3.5 Setting the Value of Pvars 16

3.6 Reading and Writing Fields in Specific Processors . 16

4. Processor Selection 18

5 !! Functions 21

5.1 Predicate II Functions 21

5.2 Logical II Functions 22

5.2.1 Logical II Operations on Numbers 22

5.2.2 Logical!! Operators 23

5.3 Numerical!! functions ... 24

5.4 Miscellaneous!! Functions . 25

5.5 User!! and * Functions .. 26

CONTENTSii

6 Parallel Global Memory References 	 28
286.1 	 Parallel Global Memory References.
316.2 	 Processor Addressing.

SST Global Operations

S58 Actually Using the Hardware

ST9 Potentially Troublesome Situations
379.1 	 Pvar Values in Non-selected Processors.
379.2 	 The Extent of Pvars . . . •
389.3 	 Using Mapcar on Functions that Return Pvars .
389.4 	 *Warm-boot ··

S9A Some Example Programs

4TB List of ESSENTIAL *LISP Commands

I
I
I
II

List of FiguresI

•
2.1 A conceptual model of a 4096 bit by 65,536 processor Connection Machine computer.

(fl and f2 represent fields) . 4•
II

•
•
•
•
•
•
•
•
•
•
•

iii

Chapter 1

Introduction

Welcome to *LISP!! This language (pronounced star lisp) is an extension of COMMON LISP, which
runs on Connection Machine data parallel computers. This ESSENTIAL *LISP manual describes the
fundamental instruction set used in *LISP. More advanced features are described in the COMPLETE
*LISP manual.

This manual is organized into the following chapters:

1. 	Introduction
This· chapter. It provides an overview of the ESSENTIAL *LISP manual's organization, and
explains the significance of the different typefaces used throughout the manual.

2. 	Connection Machine Computers and -LISP
This chapter provides an overview of the Connection Mac.hine computer and of the language
ESSENTIAL *LISP, including:

• 	 a description of the name conventions and conceptual structure of the language

• 	 example expressions that suggest the feel of the language

• 	 a description of the conventions used in presenting language functions

• 	 an introduction to the Lisp constants that specify the configuration parameters of the
Connection Machine system for use by programs

3. 	The Pvar DataStructure
This chapter precisely defines the data structure known as a ptlar and the operations that
create pvar instances a.nd act on them.

4. 	Processor Selection
This chapter describes the mechanisms for selecting the set of processors that will perform an
operation.

5. 	 !! Functions
This chapter describes the functions for comparing and combining pvars numerically and log­
ically, and describes the mechanisms for defining new functions of this type.

1

I

I

II

•
•
•
•
•
•
•
•
•
•
•

•
•

2 	 OHAPTER 1. INTRODUOTION

6. 	Parallel Global Memol'Y References
This chapter discusses the mechanisms for moving data between Connection Machine proces­
sors.

7. 	Global Operations
This chapter describes operations for combining data globally from all Connection Machine
processors.

8. 	 Actually Using the Hardware
This chapter describes the process of actually using the hardware, including procedures for
logging in to and resetting the Connection Machine system.

9. 	 Potentially Troublesome Situations
This chapter describes potential ambiguities and trouble spots in the ESSENTIAL "'LISP lan­
guage definition.

10. 	Appendix A * Some Example PrQgrams

This chapter provides some sample programs written in *LISP.

11. 	Appendix B * List of ESSENTIAL *LISP Commands
This chapter summarizes all the commands described in ESSENTIAL *LlSP and can be used as
a quick reference guide. Commands are grouped by functionality, rather than by name; so if
users know what they want to do, but not which ...LISP command to use in order to do it, then
this is the place to go for help.

1.1 The Use of Different Typefaces in This Manual

Throughout the ESSENTIAL "'LISP manual, actual code (including actual names of functions) will
generally appear in the following typeface:

(cons a b)

Names that stand for pieces of code (metavariables) will generally be written in italics. Note that
in function descriptions, the names of the parameters will appear in italics for expository purposes.

•••
Chapter 2•
Connection Machine Computers and *LISP•• 2.1 The Connection Machine Computer Organization

A Connection Machine data parallel computer consists of a large number of simple processors. Each
has some associated local memory and is integrated into a highly connected communications net­•

I work. A typical configuration might have 65,536 processors with 4,096 bits of memory each. Typical
applications utilize data structures that have components spanning many Connection Machine pro­

I
cessors. The goal of "'LISP is to provide a language for creating and manipulating these structures
in parallel.

There are several intuitive images of the Connection Machine computer organization that are

I
useful to keep in mind when thinking about programs. Perhaps the simplest picture represents the
memory of a single processor as a column with a slot for each bit location. The whole machine is
represented as a rectangular grid in which successive columns represent successive processors. Thus
for the machine configuration on the following page, imagine a rectangle with 65,536 columns and
4,096 rows (see Figure 2.1).

The .position of a bit in the memory of its processor is known as its location. A region of contiguous

I bits in each processor's memory is known as a field. A field's location is the location of its first bit.
Figure 2.1 provides a graphical image of these concepts; all memory bits contained in a one bit field
at location 1 are labelled "f!", and all bits contained in a length 5 field at location 4 are marked ".£2".
In "'LISP, a data structure containing the location, length,' and type of a Connection Machine field I is called a pvar (for "parallel variable"). A pvar corresponding to the field "n" marked in Figure
2.1 would be a Lisp object containing the numbers 4 and 5, as well as other information.

Because the processors are tied together by a communications network, it may be helpful to extend

I the above picture mentally, One useful communication configuration considers the processors to be

I
organized in a two-dimensional grid. In this case, one might picture the machine as a rectangular
parallelepiped; the top face represents the grid of processors, and the column beneath each square
of the grid represents the bits in the corresponding processor's memory. This image is convenient
because it utilizes well developed three-dimensional intuition in thinking about data movement.

I
A more realistic representation organizes the processors on the corners of a high-dimensional

hypercube. Unfortunately, it is very difficult to completely picture this organization.
With "'LISP, one is able to specify the number of dimensions, and the sizes of those dimensions,

that the Connection Machine system is to simulate. Due to its very high-bandwidth, flexible hy-

I 3

I

I

4 CHAPTER 2. CONNECTION MACHINE COMPUTERS AND *LISP

Location
o
1
2
3
4
5
6
7
8
9

4093
4094
4095

Proce"ssor Address
0 1 2 3 4 5 6 65,533 65,534 65,535

f1 f1 f1 f1 f1 f1 f1 f1 fl f1

f2 f2 f2 f2 f2 f2 f2 f2 f2 f2
f2 f2 f2 f2 f2 f2 f2 f2 f2 f2
f2 f2 f2 f2 f2 f2 f2 f2 f2 f2
f2 f2 f2 f2 f2 f2 f2 f2 f2 f2
f2 f2 f2 f2 f2 f2 f2 f2 f2 f2

Figure 2.1: A conceptual model of a 4096 bit by 65,536 processor Connection Machine computer.
(fl and f2 represent fields)

percube router network, the Connection Machine system is able to efficiently simulate almost any
interconnection pattern. A thorough description of the system can be found in The Connection
Machine by W. Daniel Hillis [Hillis 851.

Programs for the Connection Machine system are written in *LISP on a host computer. This host
machine is typically a Symbolics 3600 series Lisp Machine or a Digital Equipment Corporation VAX.

There are three communication channels between the host computer and the Connection Machine
computer:

1. 	 The host generates an instruction stream that is broadcast to all Connection Machine proces­
sors (whether a processor executes an instruction depends on its internal state). Most *LISP
operations affect the Connection Machine processors in this way.

2. 	 The host may read or write any location in any processor's memory directly. In *LISP, the
instructions pref and pref-grid use this channel (see Section 3.6).

3. 	 There is the so-called "global" channel from the Connection Machine system back to the host
which is used, for example, t,o see if any processor has a 1 stored in a given memory location.
The *LISP instruct.ions *logior, *logand, *or, *and, *min, and *max use this channel (see
Chapter 7).

5

•

I

II

II

I

II

I

II

I

I

I

II

I

I

I

I

I

I

2.2. *LISP TERMINOLOGY

.2.2 *LISP Terminology

The following are descriptions of terms that are used with a specific meaning in *LISP;

• 	 Processors
The conceptual entities that operate on da.t.a in parallel are called processors. Often these
correspond to actual hardware processors, but sometimes a single hardware processor simulates
several conceptual processors. In this case, the simulated processors are referred to as virtual
processors. This simulation is transpa.rent to the programmer.

• 	 Cube Address
Each processor has a unique cube address. The cube addresses of the processors in the Connec­
tion Machine system range between zero and the number of processors less 1. On a full sized
machine, this would be between 0 and 65,535. The cube address of a processor is independent
of how the Connection Machine system is configured at initialization time.

• 	 Grid Address
A specific processor can also be identified by one or more numbers, referred to as the processor's
grid address. The number of coordinates in a grid address is determined by the number of
dimensions the Connection Machine system is simulating. For example, one might refer to a
processor with a grid address of (3,4,1) in a three-dimensional machine. A two-dimensional
machine representing a two-dimensional grid would require two grid address coordinates. Note
that the numbering scheme for grid addresses in a one-dimensional machine is not necessarily
the same as that for cube addresses. ESSENTIAL .LISP requires the user to choose a machine
configuration at initialization time and to keep that configuration throughout the program.
The COMPLETE *LISP manual describes how to dynamically change the size and shape of the
Connection Machine system.

• 	 Field
The most primitive form of data in *LISP is a field. A field is a string of contiguous bits in the
same memory locations of each processor. A field in a processor may contain any valid Lisp
object. The different processors of a field may contain different types of values as well. A field
exists only inside the Connection Machine processors.

• 	Pvar
A Lisp object that contains all the information necessary to manage a field is called a pMr.
This is short for parallel variable.

• 	 Contents of 8 Pvar
The phrase contents of a pvar is Oft.Cll used to refer to the values stored in the field ill the
Connection Machine memory that is described by the pvar.

• 	 Currently Selected Set
Some *LISP operations are only carried out in a subset of the Connection Machine processors.
This subset is called the currently selected set and is specified by using *LISP instructions, such
as *all, *when, *cond, and *if.

6 CHAPTER 2. CONNECTION MACHINE COMPUTERS AND ",LISP

• 	 !!
The names of instructions that return pvars as their values end with ,! (pronounced "bang·
bang"). This suffix is meant to look like two parallel lines and indicates that a parallel variable
is returned. It is an excellent idea for user-defined functions to obey this convention (though
nothing enforces it), because it helps ensure that pvars are produced only in contexts where
they can be used. There are a few ESSENTIAL "'LISP forms whose names do not end in !I, such
as .when, .8011 and .let, that, nonetheless, may optionally return a pvar.

. '"
All ESSENTIAL "'LISP functions that do parallel computation and do not end in " begin with
• (pronounced "star"'). Note th~t in COMMON LISP. is used as a prefix operator to denote
multiplication, but that it is used in "'LISP to denote parallel operations (hence, the name
"'LISP!).

The functions in ESSENTIAL "'LISP that end in I' are:

type-of I I floatp! ! self-address! !

allocate! ! integerp! ! grid-from-cube-address!!

numberp! ! cube-from-grid-address!1
logeqvl' eq!! eql! I
lognot' I logxor! I andl! or! I /-, I -! ! <.11
logior!! logandll not! I xor!! >11 <"11>=11

+1 ! -II "'!!

/! ! 1+ I! 1- II cond!! if!!

! I random! ! sqrt! 1 deposit-byte! !

truncate! 1 float! , load-byte II prefl! pref-grid!!

min! 1 maxi! modi I enumerate! ! pref- grid-relative! ,

The remaining functions in ESSENTIAL "'LISP do not usually return pvars. Those that act in
parallel are annotated with a '" prefix. Operations of this type include:

.defvar "'let 	 *8011 • when
• deallocate .let• ~cond *if

"'set

*defun 	 "'cold-boot "'logior
*f uncall "'warm-boot "'logand
"'apply

"'min "'and "'sum *pset
"'max *or .product .pset-grid

•
•

2.3. OVERVIEW OF ESSENTIAL *LISP 7•

•

Most of these functions are parallei analogs of corresponding Lisp functions or deal with illter­

processor communication. Precise definitions of their behavior will be provided in other sections.

Other ESSENTIAL *LISP functions include:
•

•
pvarp dimension-size pref

pref-grid

For a complete list of ESSENTIAL *LISP commands, see Appendix B.

• 2.3 Overview of ESSENTIAL *LISP

•
This section contains some example expressions to give the reader an idea of what *LISP expressions
actually look like. Precise definitions of all the functions used occur in other sections of the manuaL
(Note that Appendix B of this manual will refer the user to page numbers on which these definitions
begin.)

I 2.3.1 Pvars

The following are five sample pvars:

I (*defvar a)

(*defvar b (!! 5) "This is a documentation string. II)

(*defvar c (II -2.67»

I (*defvar d til)

(*defvar e (1+11 (self-addressl!»)

I The last four have been initialized with specific values: b is a Lisp symbol that points to a
pvar containing the integer 5 in each processor; c contains the floating point number -2.67 in each
processorj d contains the Lisp symbol T in each processor; and e contains an integer that is the cube
address of the next higher processor. See Section 3.1 for a more detailed description of *defvar.

I The function pref can be used to read out some of the above values. The arguments of pref are
a pvar and a cube address. This is analogous to the COMMON LISP aref; the pvar is equivalent to
an array and the cube address to the array index.

I For example,

(pref c 0)

I returns the Lisp value -2.67, since that is what is contained in pvb.r c in processor O.

I (pref d 365)

I

I

I

8 CHAPTER 2. CONNECTION MACHINE COMPUTERS AND .LISP

returns the Lisp value T because that is what is contained in pvar f in processor 365. See Section
3.6 for a more detailed description of pref.

• LISP uses the COMMON LISP macro setf to turn accessor expressions into modifier expressions.
For example, there is no function that does the opposite of pref. To write into a single processor of
a pvar, one would write something like:

(setf (pref b 0) 15)

The form (pref b 0) would now return 15 because 15 was just stored in pvar b in processor O.
The following demonstrate arithmetic operations on the examplepvars:

(*set a (+!! be»

will make the contents of pvar a be the sum of the contents of pvar band pvar e. Notice that because
e contains floating point values, the integers contained in b are properly coerced to floating point
and the result in a will be floating point as well. See Section 3.5 for a more detailed discussion of
*set.

Expressions can be nested:

(*set a (-II b (." a (112»»

This sets a to the difference of band 2 times 8.:. This simple expression causes thousands of operations
to go on simultaneously! See Section 5.3 for a more detailed discussion of numerical!! functions.

2.3.2 Selection

It may be desirable to do an operation in only the processors ,with odd cubeacldresses. In this case,
select the subset of all processors consisting of those whose cube addresses (contained in the pvar
returned by the function self-address! I) end in 1 using *when:

(*when (-!! (111) (mod! I (self-address!!) (II 2»)
(*set a (+11 a b»)

or equivalently:

(*defvar odd-address-p (==!I (!! 1) (mod!! (self-address!!) (I! 2»»

(*when odd-address-p
(.set a (+1' a b»)

III another case, it may be desirable to do 8.11 ('ptlJ"ati<')1l in the processors that have both an even
cube address, and in wbich tile pvar a conta.ins zt·ro. Two natural ways to do this are to (1) use the
logic functions to seJect the correct set:

(*when (and!! (notl! odd-address-p)
(-, I a (!! 0»)

(*set a (+!! a b»»

9

II
I
II
II
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.3. 	 OVERVIEW OF ESSENTIAL ",LISP

or equivalently, (2) to nest "'when expressions:

(*when (not!! odd-address-p)

(*when (-I! a (!I 0»)

(*seta (+!! a b»»

It might also be advantageous to do an operation with a temporary variable aUocated. For

example, if a programmer wants to do an operation in all processors whose addresses are divisible
by four, he or she might say:

("'let «g (mod!! (self-address!!) (I! 4»»
(*when (=!! g (!I 0»

("'set a (+!! a b»»
This first creates a temporary variable g and loads it up with the two lowest order bits of the
(self-address I I). In aU processors in which this is 0, the *set operation is performed.

To perform different operations in processors whose addresses have a remainder of 0, 1, 2 or 3
after dividing by 4, the foUowing might be used:

("'let «g (mod!! (self-addressl!) (114»))
(*cond

«=1 I g (!! 0»
«=11 g (I! 1»
«=11 g (I! 2»
«=!I g (!I 3»

(*set. a (+1 I a b»)
(*set a (-!I a b»)
(*set a (*11 a b»)
(*seta CIII! a b»»)

This may also be done using:

(*let «g (mod!! (self-address!!) (I! 4»))

(*set a

(condl!
«=!! g
«=!! g
«=1 ! g

«"" g

(II 0» (+11 a b»)
(! ! 1» (-II a b»)
(!! 2» (* I! a b»)
(II 3» (fI!! a b»»)

There are also *LISP expressions analogous to the Lisp if:

(*if 	«!! z x)
(*set y (!! 6»
(*set y (!! 6»)

(*set y
(if!! (<!! z x)

(!! 6)
(I! 6»)

10 CHAPTER 2. CONNECTION MACHINE COMPUTERS AND *LISP

Note that if II returns a pvar that must be stored into some destination, whereas *if is only
executed for side effect.

See Chapter 4 for more detailed descriptions of *when, *cond and *ifj Section 6.2 for the definition
of self-address! !; Section 3.4 for a discussion of *letj Sections 5.2.1 and 5.2.2 for definitions of
the logical functions; and Section 5Afor a description of if I !.

2.3.3 *Defun

To define functions that can take pvars as arguments or return them as values, use *defun instead
of defun. To define a function that takes two pvar arguments and returns their sum, difference,
product, or quotient (depending on whether the processor's address has remainder 0, 1, 2 or 3
when divided by 4 in all processors in the currently selected set), use something like the following:

(*defun four-function!! (pvar-a pvar-b)
(*let «address-bits (modI! (self-address! I) (!! 4»)

(answer»
(*cond

«zll address-bits (II 0» (*aet answer (+11 pvar-a pvar-b»)
«=11 address-bits (II 1» (*set answer (-I I pvar-a pvar-b»)
«-II address-bits (II 2» (*set answer (*11 pvar-a pvar-b»)
«-II address-bits (II 3» (*set answer (//!! pvar-a pvar-b»»

answer»

This may now be used like any other I I function, as in:

(*set a (four-function! I (~IJ a (II 4» (-II a b»)

To pass a*LlSP function as an argument, use *func.llll. For example:

(defun *compose (*f *g x)

(*funcall *f (*funcllll *g x»)

(*set a (*compose 'sqrtll '1+!! (II 8»)

acts like:

(*set a {sqrtl! (1+!! (II 8»»

See Section 5.5 for the precise definitions of both *defun and *funcall.

2.3.4 Communication

This section demonstrates how to cause the processors to communicate with one another.
One connectivity pattern that can be specified upon initialization is a two-dimensional grid in

which each processor has a neighbor on the north, eatlt, west, and south. It is possible to sum the
value contained in a in the four neighbors of each processor, and store the result back in a as follows:

I

I

I 2.4. CONFIGURATION CONSTANTS AND -FUNCTIONS 11

I
 (*set a (+!! (pref-grid-relative!l a (!! -1) (!! a)}

(pref-grid-rel'ative I ! a (I! I) (II O)}

(pref-grid-relative!! a (! ! O) (II -I) }
(pref-grid-relative!! a (I I O) (! ! 1»»

I
I (Note that the effect of indexing out of bounds is ignored for the time being.)

To have the first 100 processors write the contents of field b into the field a of those processors
whose addresses are 7 larger, do:

(*when «!! (self-addressl!) (!! 100})
(setf (pref!1 a (+!I (self-address!!) (!l 7})} b}}

I Finally, to find the maximum value of a in all even processors, one possibility is to do:

I
(*a11

(*when (=!! (!I 0) (mod!! (self-address!!) (!! 2»)
(*max a»)

2.S.5 The Format of Function Definitions

I The format of function definitions in this manual strive to be as compatible as possible with the
format used in the COMMON LISP manual [Steele 841. Argument names can restrict the type of an
argument; argument names that end in the suffix "pvar" must be pvars. The name "illteger-pvar"

I restricts the argument to a pvar whose fields in the currently selected set of processors must all
contain integers.

I 2.4 Configuration Constants and Functions

I
*LISP makes it convenient to simulate in software a configuration of processors that is different
from their physical configuration., It is important to write software that can take advantage of this
flexibility. In addition, it is desirable to write software that will run on machines with differing

I
amounts of physical hardware.

The variables defined in Section 2.4.1 specify the parameters of tile machine as perceived by the
user's program. If a program uses only these constants and functions, it is guaranteed to run in any

I
configuration.

The size of simulated configuration of processors is specified through the *cold-boot function
(see Chapter 8).

2.4.1 The Size of the Machine

I *number-of-processors-limit*

I
This variable specifies the effective number of processors a user program sees. For a one-board
machine with no virtual processors, this will be 512. For a complete machine with 65,536 physical
processors, each simulating 16 processors, this constant will be 1,048,576.

I
I
I

12 CHAPTER 2. CONNECTION MACHINE COMPUTERS AND ",LISP

"'log-number-of-processors-limit'"

This variable provides the logarithm, base 2, of the number of processors available.

"'number-of-dimensions'"

This variable is defined when "'cold-boot is run. Its value is the number of dimensions given.

"'Cold-boot defaults this variable to be 2.

dimension-size dimension

This function returns one more than the maximum allowable grid address for the specified dimension.

Note that dimension is zero based; for example, in a two dimensional machine, the first dimension

is dimension zero and the second is dimension one. The number returned will be the same as that

specified to the function *cold-boot.

2.4.2 Pre-defined Pvars

t! !

This is a pvar whose contents in each processor is the Lisp symbol T.

nil! !

This is a pvar whose contents in each processor is the Lisp symbol NIL.

Chapter 3

The Pvar Data Structure

The basic abstraction in *LISP is the pvar. A pvar is a Lisp object that references a field in the
Connection Machine system. It contains everything necessary to describe the field. In ESSENTIAL
*LISP, the contents of pvars may be any valid Lisp object. As in Lisp, coercion between data types
and the amount of space necessary to accommodate an object in a pvar is automatically handled by
"'LISP.

This portion of the manual is organized as follows:

• 	 Section 3.1 describes *defvar, allocate I!, and *deallocate, which create new pvars and
destroy old ones.

• 	 Section 3.2 describes some functions that return properties of a pvar.

• 	 Section 3.3 discusses coercion of pvar types and lengths.

• 	 Section 3,4 describes *let and *let*, which allocate temporary pvars.

• 	 Section 3.5 describes *set, which allows each processor to set the value contained in the field
defined by a pvar.

• . Section 3.6 describes functions for explicitly putting Lisp values into the field defined by a pvar
in a specific processor.

3.1 Constructing New Pvars

To create a relatively permanent, named pvar, use *defvar (analogous to the Lisp defvar). To
create a permanent, unnamed pvar, use allocate' !; and to create a temporary, named pvar, use
*let (analogous to the Lisp let).

*defvar symbol loptional pvar documentation-string

This creates a new pvar that is permanently allocated. symbol will contain the allocated pvar. The
optional argument pvar may be any pvar or pvar expression. *defvar will create a new pvar of the
type and size of the given pvar, initialize it to the given pvar's contents, and setq the symbol to that

I
I
I
I

II
II
I
II

I

I 	
13

I

I

14 CHAPTER 8. THE PVAR DATA STRUCTURE

new pvar. If no pvo.r argument is given, the symbol will contain a pvar of value nil I I. Note that
*cold-boot will reset the values of all J1>vars allocated by *'defvar. This form returns symbol.

Some example uses of *defvar are:

(*defvar a)

(*defvar b (II 5»

(*defvar c (+11 b (II 6»)

(*defvar d tit)

(*defvar e (self-addressl!»

(*defvar f c)

allocate'! toptional pvo.r

This creates a relatively permanent pvar, just like *defvar except that the created pvar is simply
returned. It is up to the user to store it someplace. allocate! I is very useful for making Lisp
arrays or structures that contain permanent pvars. If no pvo.r is specified, then the returnedpvar
will have the value nil I I.

Some example uses are:

Assume c is a vector:

(dotimes (j (length c»

(setf (aref c j) (allocate!!»)

and

(setq a (allocate!!»

(setq b (allocate!! (II 6»)

(setf (aref c 4) (allocate!! t!I»

*deallocate pvo.r

This deallocates the given pvar if was permanently allocated (i.e., it was defined using either allo­

cate I! or *defvar). It is an error to use a pvar after it has been deallocated. This function returns

no values.

3.2 Determining the Type of a Pvar

pvarp obiect

This returns T if the argument is a pvar and NIL if it is not.

type-of II pvar

This returns a pvar containing t,he COMMON LISP typl~·of the argumenipvar.

I

I

I 3.3. COERCION OF PVAR TYPES AND LENGTHS 15

I 3.3 Coercion of Pvar Types and Lengths

When there is a need to lise two pvars together, there is a potentiaJ need for coercion. This dt'not.es
the process whereby a pvar is converted to a pvar of a different size or type. Coercion Illay have to

I occur when one tries to set the contents of one pvar to the contents. of another, when one tries to
compare the contents of two pvars, or when one tries to do a numerical or logical operation on the
contents of two pvars.

I 3.4 Allocating Local Pvars

I

.LISP maintains a stack of temporary pvars for its own purposes. When a !! function returns a

pvar, it has been allocated on this stack. .LISP's ability to arbitrarily nest !! expressions stems

from its maintenance of this stack. While this automatic allocation takes care of many situations,
there are times when it is desirable to explicitly allocate a temporary variable. The ESSENTIAL

I
 LISP functions for doing this are .let and .let:

*let ({(symbol toptional pvar)r} .trest body

The first expression following the *let should be a list of lists, each specifying one temporary

I variable. The elements of each sublist should consist of a Lisp symbol whose value will be the

I

temporary pvar followed by an optional pvar that will be copied into the new one. This format

is very similar to that of *defvar, the only difference being that several pvars can be created at

once; these pvars only survive for the extent of the form. It is an error to try to refer to these pvars

outside of the body of the .let. In other words, the symbols have lexical scope (as in COMMON

LISP), whereas the pvars themselves have dynamic extent that terminates when the *let form is
exited. (For a more detailed discu~sion of this, see Chapter 9 on page 37 of this manual.) *let
returns the value of the last form of the body, regardless of whether that value is a pvar. It is
legitimate to return a temporarily bound pvar.

I
let ({(symboltoptional pvar)}*} .treat body

This function behaves in the same manner as *let except that, as in COMMON LISP, the defining
expressions are evaluated in paralleL

I
 Example *let expressions might look like:

I

(*let* «a)

(b (!! 8»

(c (*!! b (II 528»)

(d (!! -2.715»

(e (self-address II»)

(some-pvar-function abc d e) ;This may modify a,b,c,d and/or e

I (+I! abc de» ;This returns a pvar

I
,t take the global maximum of bits 16-31 of the self pointer

(*let «a (load-bytell (self-addressll) (1.1 16) (1116»»

(*max a»

I
I

..

I

http:dt'not.es

16 CHAPTER 3. THE PVAR DATA STRUCTURE

3.5 Setting the Value of Pvars

The *set special form allows the contents of one pvar to be set to the contents of another. The

field is set in those processors that are currently selected. A *set expression returns no value. *set

takes multiple pairs, which are set sequentially. *set is often used in conjunction with *a11 to set

the contents of one pvar to the contents of another in all processors.

*set {ptlar.l ptlar . .e}'"

This sets the contents of ptlar·l to the contents of ptlar • .e ill all processol'S of the currently selected

set. Note that both of the arguments are evalua.ted.

Some examples of the use of this function are:

(*set a (+11 be»

(*a11 (*set a (II -1) b a e (II ~3»)

(*when (>!I d (II 4» (*set a b»

3.6 Reading and Writing Fields in Specific Processors

This section describes functions for getting data into and out of the Connection Machine processors.
They are independent of the currently selected set and return, as Lisp values, the read or writt~n
Lisp value.

pref ptlar addre88

This function returns, as a Lisp value, the contents of the field specified by ptlar in the processor
whose cube address is address. setf may be used with pref to write a value into a single processor
of a pvar.

(pref foo 17)

returns the contents of pvar foo from processor 17.

(setf (pvar foo 17) (* 19 89»

sets the contents of pvar foo for processor 17 to 1691.

pref-grid ptlar hest addresses

This function returns, as a Lisp value, the contents of the field specified bYPtlar in the processor
whose grid address is given by addrtlSses. There must be as many addresses as there are dimensions
(as specified with *eo1d-boot). setf may be used with pref-grid to write a value into a single
processor of a pvar.

(pref-grid bar 4 7)

17

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

3.6. READING AND WRITING FIELDS IN SPECIFIC PROC£SSORS

returns the contents ofpvar bar from processor (4,7) (on a two-dimensionally configured machine).

(setf (pref-grid bar 4 7 8) (* 19 89»

sets the contents of pvar bar for processor (4,7,8) (on a three-dimensionally configured maclline) to

1691.

Chapter 4

Processor Selection

Most operations are only executed in a subset of Connection Machine processors known as the
currently selected set. Some of the special forms in ESSENTIAL *LISP that change the currently
selected set are *a11, * when, *cond, and *if. These special forms select processors based on the
result of a pvar expression. Any processor in which the pvar expression evaluates to NIL is eliminated
from the selected set.

Every user-defined function is expected to leave the currently selected set in the same state it was
in when it was called. If one uses only the functions defined below, this discipline is automatically
enforced. It is common for user functions to have a. *&11 surrounding their bodies to ensure that they
are starting out with the complete machine selected. Using the functions described in this section,
the selected set. is whittled down to select only the processors that should do a given operation. Note
that the body of these forms is always executed, even if there are no selected processors.

*a11 .treat body

This form selects all processors. Its body is executed with the currently selected set equal to the
entire machine. The value of the final expression in the body is returned whether it is a. Lisp value
or a pvar.

*when pvar .treat body

This form subselects from the currently selected set. Thus every processor that is unselected when
*when is called remains unselected in the body of the *when.. It selects processors in which pvar is
non-NIL. Even if there are no selected processors, ALL consequent forms are evaluated.
The value of the final expression in the body is returned whether it is a Lisp value or a pvar.

*cond {(ptlar {formY)} *

This form is analogous to the Lisp condo Unlike the Lisp cond, *cond evaluates allclausesj however,
the currently selected set is determined by the pvar expressions. The nth consequent is evaluated
with a selected set made up of initially selected processors that didn't pass the first n - 1 tests, but
did pass the nth one. t!! selects aU remaining processors in the initial selected set. Even if there are
no selected processors, all consequent forms are evaluated. Unlike Lisp's cond, this function returns
no values and is executed only for its side effects (see also the description of cond!! in Section 5.4).

18

II

19

II *if pfJar then-form koptional else-form

II
This form is analogous to the Lisp if. then-form is performed in all processors of the currently
selected set in which pfJar is not NIL. The optional else-form form is evaluat.ed in all other processors
of the currently selected set in which the pvar is NIL Even if there are no selected processors, bot.h
then-form and else-form are evaluated. Unlike Lisp's if, this function returns no values and IS

executed only for its side effects (see also the description of if!! in Section 5.4).

with-css-saved {form}"

This form is used whenever controillow would abnormally pass out of a. *LISP form that restricts

the currently selected set (e.g. using throw, return-from, or go, to leave the body of a *when).

I with-css-saved uses an unwind-protect to trap these events and force the currently selected set

back to its state at the time the with-css-saved form was begun. with-css-saved returns what
is returned by the evaluation of the last form of its body.

II do-for-selected-processors (symbol) hest body

This form evaluates body as many times as there are active processors, each time with symbol

II
bound to the cube address of a different active processor. Like COMMON LISP's dotimes the return
statement may be used to exit the do-for-selected-processors form immediately. Normally,
do-for-selected-processors returns NIL.

I
 Some examples of the use of these fundiolls are:

(*a11 (*set a b»

I
 (*when (=!! a b) (*set e (+!! cd»)

I
(*cond «=!! a (!! 1» (*set e (+!! be»)

«not!! (=!! c d» (*set f (*!! b c»)
(t!! (*set f O! 9»»

(*if (=!! c d) (*set e f) (*set g h»

II (*set a (=!! be»
(*when a (*set b (-!! b»

I and

I (*defun f (x y)
"Returns y divided by x for y greater than O. Returns NIL
if any x is o.

I "
(block foo

I

I

I

http:evaluat.ed

20
CHAPTER 4. PROCESSOR SELECTION

(with-css-saved

(*when (>11 (II 0) y)

(*if (-II (II 0) x)

(return-from .foo nil)

(/11 y x)

»»)

I

I

I

I Chapte.r ,5

!! FunctionsI

I

This section introduces a, variety of functions that work within an individual processor and that
return pvars as values. Recall that in *LISP, it is conventional for functions that return PYarS to end

I • IIIn ...

This portion of the manual describes the following:

I
• the predicates that return Boolean pvars (Section 5.1)

• the logical functions (Sections 5.2.1 and 5.2.2)

• the numerical functions (Section 5.3)

I • the forms that allow the user to define his or her own II functions (Section 5.4)

I 5.1 Predicate I! Functions

I
The functions in this section are typically used as predicates within *when expressions. They return
a pvar that contains T in all processors of the currently selected set in which the predicate holds,
and a NIL in those in which it does not. In comparing pvars of different types, the less expensive
pvar types are coerced to the more expensive types (e.g., integers are coerced into ft.oats before
comparision is done).

I ... , I numeric-pvar .trest numeric-ptJars

I
This returns a pVaI' that contains T ill each processor where the argument pvars contain equal values
after type coercion and NIL elsewhere. To see if a pvar is equal to a Lisp constant, use an expression
like:

(=!! foo (!! 5»

I If only one argument pvar is given, the returned pvar will be t! ! .

/=!! numeric-ptJar treat ntJ.mem-ptJars

I
This returns a pVal' that contains T in each processor where the argument pvars contain unequal values
after type coercion and NIL elsewhere. If only one argument is given, the retufll.,d pvar will be t! I.

I
21

I

22 CHAPTER 5. !l FUNCTIONS

(NOTE: On Symbolics Lisp machines, when using the Zetalisp reader, the symbol «I" is a reader

macro character, so one must use "//=! I".)

<1 1 numeric-ptlar .trest numeric-ptlars

This returns a pvar that contains T in each processor where the argument pvars contain values which,

after type coercion, are in strictly increasing order and NIL elsewhere. If only one argument pvar is

given, the returned pvar will be t 1!.

>!! numeric-ptlar lrest numeric-ptlars

This returns a pvar that contains T in each processor where the argument pvars contain values which,

after type coercion, are in strictly decreasing order and NIL elsewhere. If only one argument pvar is

given, the returned pvar will be tIl.

<=! 1 numeric-ptlar lrest numeric-ptlars

This returns a Pvar that contains T in each processor where the argument pvars contain values which,

after type coercion, are in non-decreasing order and NIL elsewhere. If only one argument pvar is

given, the returned pvar will be til.

>-,! numeric-ptlar lrest numeric-ptlars

This returns a pvar that contains T in each processor where the argument pvars contain values which,

after type coercion, are in non-increasing order and NIL elsewhere. If only one argument pvar is

given, the returned pvar will be t! I.

5.2 Logical!! Functions

5.2.1 Logical!! Operations on Numbers

This section contains a variety of Boolean functions that operate bitwise on the bits of the fields
described by the argument pvars and return a pvar that holds the result. These functions may be
used only on pvars whose contents are integers. The returned Pvar will usually contain positive
integers.

losnot!! integer-ptlar

This returns a pvar whose bits are the logical complement of the bits in integer-ptlar.

logior! I lrest integer-ptlars

This returns a pvar whose bits are the logical inclusive or of the bits in integer-ptlars. If there are

no ptlars, then (I! 0) is returned.

logxor I! treat integer-ptlars

Tllis is the parallel equivalent of the COMMON LISP function logxo.r.

23

I

I
I
I
I
I
I
I
I
I
I ,

I
I
I
I
I
I
I

5.2. LOGICAL 11 FUNCTIONS

logand! I .treat integer-p'lJars

This returns a pva.r whose bits are the logical and of the bits in integer-lllJars. If 1\0 l'"a1'$ an' given,
then (!! -1) is returned.

logeqv!! treat integer-p'lJars

This is the parallel equivalent of tile COMMON USP function logeqv.

5.2.2 Logical!! Operators

*LISP provides several logical operators. Some of these operators (and!! and or!!) are special
because they temporarily subselect the currently selected set as they evaluate their arguments. The
rest of the operators are normal!! functions.

As in COMMON LISP, a value is true if it is anything other than NIL.

and!! .treat p'lJars

This evaluates the p'lJars from left to right in all selected processors. As soon as olie of the p'lJars

evaluates to NIL in a processor, that processor is removed from the currently selected set for the
remainder of the and I !. and! I will return the value of the last pvar for a.ll selected processors in
which all the p'lJars are true and NIL otherwise. If no p'lJars are given, then t II is returned.

or! I .treat p'lJars

This evaluates the P'IJ(Jr8 from left to right in a.1l selected processors. As soon as one of thep'lJars

evaluates to non-NIL in a processor, tbat processor is removed from the cUlTently selected set for the
remainder of the or!!. The value returned for each processor WIll be the first pvar that evaluated
to non-NIL. If none of the pvM-S are true, then NIL is returned. If no p'lJars are given, then nil!! is
returned.

xor!! I/;reat p'lJar8

This performs the xor function on all the p'lJars. If no p'lJars are given, then nil!! is returned. In
each processor this returns T if there are an odd number of arguments that are true and otherwise
returns NIL.

eql! I pvar1 pvari]

This is the parallel equivalent of the COMMON LISP function eql.

eq!! p'IJarl p'lJari]

This is the parallel equivalent of the COMMON LISP function eq.

integerp!! p'lJar

This is the parallel equivalent of the COMMON LISP function integerp.

floatp!! pvar

This is the parallel equivalent of the COMMON LISP function floatp.

24 CHAPTE.R 5. 11 FUNCTIONS

nWllberp!! pfJo,r

This is the parallel equivalent of the COMMON LISP function nWllberp.

not!! pfJo,r

This returns T for all processors in which pfJo,r is NIL.

5.3 Numerical!! functions

This section describes the elementary numerical functions. They 'each return results of the same

type as the most expensive of their arguments (e.g. if all arguments are integers, the result will

generally be an integer; but if any arguments are Hoats, the result wiUbe a Hoat).

!! lisp-expression

This returns a pvar containing the result of lisp-e:tpression in each processor.

'+!! lrest numeric-pfJo,rs

This adds the contents of the argument pvars. The result has as many extra bits as are needed to

hold the result. If there are no arguments, then (!! 0) is returned.

- I! numeric-pfJo,r lrest numeric-pfJars

This subtracts the contents of the second through last argument's pvars from the contents of the

first. If there is only one argument, the result is that argument negated.

*!! lrest numeric-pfJo,rs

This multiplies the contents of the argument pvars. If there are no arguments, then "I 1) is

returned.

/1' numeric-pfJar lrest numeric-pfJars

This returns the quotient of pfJo,r by the rest of the pvo,rs. If there is only one argument, the result

is the inverse of pfJo,r. Note: /!, presently always returns a pvar whose contents are all Boating

point numbers. If there is only one argument, it is an error if that argument has any field whose

value is O. If there is more than one argument, it is an error if any argument hut the first has any

field whose value is O.

1+!! numeric-pvo,r

This increments the argument pvar by 1.

1- !! numeric-pfJar

This decrements the argument pvar by 1.

min!! numeric-pfJo,r lrest numeric-pvars

This returns a pvar that is the minimum of all the argument pvars.

25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.4. MISCELLANEO US II FUNCTIONS

max!! nu.meric-pvar trest nu.meric-pvars

This returns a pvar that is the maximum of all the argument pvars.

mod!! nu.meric-pvar integer-pvar

This function is identical in effect to the COMMON LISP mod function (except that it operates in
parallel!). It is an error if any field of integer-pvar is O.

truncate!! nume ric-pvar

This returns numeric-pvar coerced into an integer by truncating any fractional part.

float II nu.meric-pvar

This converts numeric-pvar to a floating point number.

sqrt!! non-negative-pvar

This returns the non-negative square root of the given pvar.

random!! limit-pvar

This returns a pvar whose contents is a random value between 0 inclusive and limit-pvar exclusive
for each processor.

5.4 Miscellaneous!! Functions

load-byte!! from-pvar position-pvar size-pvar

This function returns a pvar whose contents are positive integers. It consists of bits extracted from
from-pvar starting at bit position position-pvar, where 0 represents the least significant bit. In
any processor in which zero bits are extracted, the resulting field contains zero. This operation
is especially fast when both position-pvar and size-pvar are constants as in (l! lisp-value). from­
pvar must be a pvar containing integers, while position-pvar and size-pvar must be pvars containing
non-negative integers. Out of range bits are treated as zero for positive integers (for example,
(load-byte!! (!! 1) (!! 2) (! I 3» returns a pva.r that contains zero in each processor), and
one for negative integers (for example, (load-byte!' (II -1) (!! 2) (!! 3}) returns a pvar that
contains 7 in each processor).

deposit-byte'! into-pvar position-pvar size-pvar byte-pvar

This returns a pvar whose contents are a copy of into-pvar with the low order size-pvar bits of
byte-pvar inserted into the bits starting at location posit,·on-pvar.

When the into-pvar is positive (negative), zeros (ones) are appended as high order bits of byte­
pvar as needed. The returned value may have more bits than into-pvar if the inserted field extends
beyond tbe most significant bit of into-pvar. For example, (deposit-byte II (I I 3) (J J 1) (I J2)
(II 2» will return (I J 6). This function is especially fast when both position-pvar and size-pvar are
constants, as in (!! lisp-fJalu.e). Into-pvar and byte-pfJar must contain integers, while position-pvar
and and size-pvar must be pvars containing non-negative integers only.

26 	 CHAPTER 5. !! FUNCTIONS

if I! pvar then-ptJar else-ptJar

This returns a pvar that contains the contents, of the then-ptJar in all processors in which ptJar is
non-NIL, and the contents of else-pvar in all processors in which ptJar is NIL.

This is roughly equivalent to:

(*let «result)

(temp-pred pvar»

(*when temp-pred

(*set result then-pvar»

(*when (not I I temp-pred)

(*set result else-pvar»

result

)

An example that demonstrates the usefulness of if!! is the following function to take the absolute
value:

(*defun abs!! (pvar)

(if!! (>!I pvar (II 0» pvar (-!! pvar»)

cond!! {(pvar {form}'')}''

If there are no clauses, cond!' returns nil !!. Otherwise, if there is more than one clause, cond! !

is roughly equivalent to the following pseudo-code:

(if!! 	pvar-l

(progn all-the-forms-for-clausel)

(cond!' (rest clauses»

However, if there are no forms for a given clause, the ptJar itself is used as the value of the clause,
analogous to the COMMON LISP condo

enumerate! !

This returns a pvar that contains a unique number in each selected processor from 0 up to one less

than the number of selected processors.

5.5 	 User!! and * Functions

This section provides information necessary for defining and using new!! functions.
Pvar arguments are passed by reference, not by value. Thus the contents of pvars passed as

arguments can be changed using *set. It is generally considered poor form for a function to modify
one of its argumentsj instead, most *LISP functions return a new pvar whose contents may be a
modified copy of one of the arguments.

27 5.5. USER!! AND * FUNCTIONS

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

*defun

This is analogous to the COMMON LISP defun and must be used in place of it in defining all user

functions that might take as an argument a pvar or that might return a pvar as a result. This

returns, as a symbol, the name of the function being defined. Like the COMMON LISP de fun, the

body may contain declara.tion and a documentation string.

*funcall function .treat arguments

This is used just like COMMON LISP's funcall, but in functions defined with *defun.

*apply function arg .toptional more-args

This is used just like COMMON LISP's apply, but in functions defined with *defun.

Chapter 6

Parallel Global Memory References

6.1 Parallel Global Memory References

This section describes the mechanisms for moving data between the Connection Machine processors
in parallel. The high-speed Connection Machine router network provides global memory references
from many processors in parallel. The function that does communication is pref! !, the parallel .
version of pref.

pref!! pvar-ezpression cube-address-pvar

pref!! will return a pvar that contains the value of pvar-expNlssion from the processors addressed
by cube-address-pvar. This function evaluates pvar-expression differently from other *LJSP operators;
instead of evaluating the pvar-expression in the currently selected set, it is evaluated in the context
of the processor from which the data Is being retrieved. Unlike the pvar-expression, cube­
address-pfJar is evaluated normally (i.e., in the processors of the currently selected set).

If the value of pfJar-ezpression in a single processor is being accessed by more than one other
processor, the Connection Machine system arranges for all those other processors to get the same
value.

pref-grid!! pvar-expression ~reBt pvar-addresses ~key border-pvar

pref-grid!! will return a pvar that contains the value of pfJar-e::tpression from the processors
addressed by pvar-addresses. This function evaluates pilar-expression differently from other *LISP
operators; instead of evaluating the pfJar-expression in the currently selected set, it is evaluated in
the context of the processor from which the data is being retrieved.

There must be as many pfJar-addresses as there are Connection Machine dimensions. Unlike the
pfJar-expression, the pfJar-addresses are evaluated like normal expressions (i.e., in the processors of
the currently selected set).

It is an error to read from a non-existent processor. However, if border-pvar is provided, and if
the PfJar-addreSSell in a given processor p access a non-existent processor, then the value stored in
boroer-pfJar in processor p is returned instead.

Again, if the value of pfJar-expNlssion in a single processor is being accessed by more than one
other processor, the Connection Machine system arranges for all those other processors to get the
same value.

28

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.1. PARALLEL GLOBAL MEMORY REFERENCES

pref-grid-relative!! pilar-expression trest relatille-pllar-addresses It:key border-pvar

This function behaves like pref-grid! !, except that relative addressing is used instead of ab,,0lnte
addressing. An example of the use of this function is given later in this chapter.

Like the serial function pref, setf may be applied to pref!! and pref-grid!! to write into
memory instead of reading from it. In this case, the pilar-expression must be a symbol because one
may not store a value into an expression; this symbol will be referred to as dest-pvar.

When using setf in this manner, dest-pvar is modified only in those processors that were accessed
Processors that were not written into will retain the previous contents of deBt-pilar. An error is
signalled if a non-existent processor is addressed. This occurs when an address is out of the bounds
specified by the current Connection Machine configuration.

Although the Connection Machine hardware is capable of accessing the same memory for several
readers without problems, the user must instruct it on how to handle collisions when several proces­
sors are simultaneously writing to the same location. Should a processor be written into by several
other processors in a single memory reference, pref!! and its relatives (in combination with setf)
will signal an error. The function "'pset allows multiple writes to combine in various ways without
producing errors.

.pset combinator value-pvar deBt-pilar cube-address-pllar

For all selected processors, lIalue-pvar will be written into dest-pllar of the processor addressed by
cube-address-pvar. When more than one value is written into the same address, the combinator
determines how the values are combined. combinator may be one of the following:

1. 	 : default - If the same address is written twice, an error is signalled_ This is the same as
using setf with pref! I.

2. 	 :overwrite - Only one write per address is successful. All other writes are discarded.

3. 	 : or - If two or more values are written into a single processor, the final value will be the
logical OR of those values.

4. 	 : and - If two or more values are written into a single processor, the final value will be the
logical AND of those values.

5. 	 : logior - If two or more values are written into a single processor, the final value will be
the bitwise OR of those values.

6. 	 : logand - If two or more values are written into a single processor, the final value will be
the bitwise AND of those values.

7. 	 : add - If two or more values are written into a single processor, the final value will be the
numerical SUM of those values.

8. 	 :max - If two or more values are written into a single processor, the final value will be the
numerical MAXIMUM of those values.

I

I

30 CHAPTER 6. PARALLEL GLOBAL MEMORY REFERENCES

9. 	 :min If two or more values are written into a single processor, the final value will be the
numerical MINIMUM of those values.

*pset-grid combinator tJalue-ptJar dest-ptJar Itrest grid-address-pvars

This is analogous to *pset, except that the grid addressing is used.

Here are some sample uses of pref ! I:

(*set a (pref!! b (!! 100»)

This reads the contents of b from processor 100 and stores it in pvar a. Only those components of
a which are in processors in the currently selected set are modified.

These two forms are equivalent:

(*a11 (setf (pre!!! b (self-address!!» a»

(*all (*set b a»

This example writes pvar a into pvar b of all processors. Processors 'can read from themselves just
as easily as they can read from other processors.

These two forms are equivalent:

(*a11
(*when (>!! (self-address!I) (I! 0»

(*set a (pref!! (self-address!!)
(1-!! (self-address!!»»»

(*a11
(*when (>! I (self-address!!) (! I 0»

{*set a (1-11 (self-address!!}»»

Note that this example demonstrates that the pvar-ezpression ofpref! I is evaluated in the processor
from which the data is being fetched. Remember that it is an error to read or write from a non­
existent processor. In the above examples, the form (*when (>!! (self-address! !) (I! 0»
prevents that from happening.

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.2. PROCESSOR ADDRESSING

This function:

(*defun sum-a-pvar (pvar)

(pref

(*let «the-aum-goea-here»

(*all (*pset :add pvar the-sum-goes-here) (!! 41»)

the-sum-goes-here)

41)

returns the sum of a pvar over all the Connection Machine processors. (Processor 47 was chosen to
contain the sum for demonstration purposes only.)

The following is an example of pref-grid-reiative II:

(*a11
(*set color

(/! !
(+! !

(pref-grid-relative!! color (I! -1) (I! 0) :border-pvar (II 1»
(pref-grid-relativell color (II 0) (II -1) :border-pvar (II 1»
(pref-grid-relativel! color (II 0) (II 1) :border-pvar (II 1»
(pref-grid-relativel! color (! I 1) (I I 0) :border-pvar (I! 1»
color)

(! IS»»
This example causes the value of the color pvar in each processor to be averaged with the 4
processors to its north, east, west and south.

6.2 Processor Addressing

The following are functions that deal with address generation and translation:

l!Ielf-addrel!lsll

This function returns a pvar that contains the cube addl'ess of each select.ed processor.

self-address-grid!! dimension-pfJar

This returns a pvar that contains the gl'id address, in tbe specified dimension, of eadi selected
processor. Each processor may specify a different dimension through dimIJnsion-pvar.

grid-from-cube-addreas cube-address dimension

This function takes a cube-addrelJ$ and returns the grid address for the specified dimension. This
fUllction executes entirely in the host computer.

http:select.ed

32 OHAPTER 6. PARALLEL GLOBAL MEMORY REFERENCES

cube-from-grid-address address-pvar A:r.est address-pilars

This function translates a grid address consisting of (possibly) several address-pvars into a cube
address. Tbis function executes entirely in the host con.pllter.

grid-from-cube-addressJ I cube-address-pvar di'mensi'on-pvar

This function takes a cube-address-pvar and returns a pvil.r conta.ining the grid address for the
specified dimension-plJar for each selected processor.

cube-from-grid-address!! address-plJar A:res.t addrus-plJars

This function translates a grid address consisting of (polisibly) several addres8-plJars into a cube
address for each selected processor.

I
I
I
I
I Chapter 7

Global OperationsI

I

The following functions collect data from many processors in the Connection Machine computer:

I *logior integer-pvar

This returns a Lisp value that is the bitwise logior of the contents of integer-pvar in all selected

processors. This returns the Lisp value 0 if there are no selected processors.

I

I *logand integer-ptJar

This returns a Lisp value that is the bitwise logand of the contents of integer-ptJar in all selected

processors. This returns the Lisp value -1 if there are no selected processors.

*minnumeric-ptJar

This returns a Lisp value that is the mInImUm of the contents of numeric-ptJM in all selected

I processors. This returns the Lisp value NIL if there are no selected processors.

I

*max numeric-ptJar

This returns a Lisp value tllat is the maximum of the contents of numeric-ptJar in all selected

processors. This returns the Lisp value NIL if there are no selected processors.

*or ptJar

I This returns a Lisp va.lue of T if the contents of ptJar is non-NIL in any selected processor; otherwise,

I

it returns NIL. If there are no selected processors, this function also returns NIL. For example, to

determine if there are any processors currently selected, use (*or t! I), which returns T only if there

are selected processors.

I

*and ptJar

This returns a Lisp value of T if the contents of ptJar is non-NIL in every selected procesSor; otherwise,

it returns NIL. If there are no selected processors, this function returns T.

I

*sum numeric-ptJar

This returns a Lisp value that is the sum of numeric-ptJar in every selected processor. This returns

the Lisp value 0 if there are no selected processors.

I 33

I

I

34
CHAPTER 7. GLOBAL OPERATIONS

*product numeric·ptlar
This returns a Lisp value that is theproductofnumeric~.ptlarin every selected processor. This
returns the Lisp value 1 if there are no selected processors.

I
I
I
I
I Chapter 8

I Actually Using the Hardware

I
I

This section describes the two "'LISP functions (*cold-boot and *warm-boot) that allow the user
to actually use the hardware.

*cold-boot lkey initial-dimensions

This runction initializes .LISP and must be called immediately after loading in the .LISP software.

I It resets the internal state of the "'LISP system, as well as the Connection Machine hardware. All

I
*defvar pvars are reallocated and their initial values are recomputed according to the order in which
they were defined.

In addition, the user may specify the initial-dimensions of the machine. This argument is a list
of dimension sizes. This affects the behavior of "'LISP functions such as pref'-gridll and pref­
grid':"relative! !. The dimensions must be powers of 2. If no initial-dimensions are specified, then
it defaults to the same values as in the previous call to *cold-boot.

I .LISP will try to attach the necessary amount of Connection Machine hardware to satisfy the

I
user requirements. If the hardware is not large enough, or is not of the proper shape, .LISP will
try running virtual processors. The only difference the user will ever notice is a degradation of
performance. An error will be signalled if sufficient hardware is not available.

*cold-boot is typically called by the initialization function of the user's software. Under normal
circumstances, this need only be called at the start of a session.

I Here are some typical calls:

;; allocate 16K processors

(*cold-boot :initial-dimensions (list (expt 2 14»)

I ;; use same initializations as previous call

(*cold-boot)

I ;; 2-D grid (128 x 128)

(*cold-boot :initial-dimensions (list 128 128»

I
 ;; allocate a 16 dimension hypercube

(*cold-boot :initial-dimensions (make-list 16 :initial-element 2»

I 35

r

I

36 OHAPTER 8. AOTUALLY USING THE HARDWARE

"'warm-boot

This function must be called whenever a .LISP program is abnormally terminated for any reason.

The function will reset only certain internal .LlSP and Connection Machine hardware states.

It is wise to call this function at the beginning of major entry points in the user's software, since
previously run code may have left the Connection Machine hardware in an inconsistent state.

Chapter 9

Potentially Troublesome Situations

This chapter describes potential ambiguities and trouble spots in the ESSENTIAL *LISP language
deanition.

9.1 Pvar Values in Non-selected Processors

It is an error to depend on the value of a pvar in a processor which was not in the currently selected
set at the time the pvar was created.

For instance, in the following:

(*when «I! (self-address!!) (I! 10»
(*let «foo (self-address!l»)

(print (pref foo 20»
»

the ESSENTIAL *LISP language definition does not define the va.lue printed in the a.bove example.

9.2 The Extent of Pvars

Unlike COMMON LISP, pvars defined using *let or *let* have dynamic extent - that is, it is an
error to reference the value of a pvar once the body of its defining *let or *let* has been exited.

For example:

(*defun will-not-work (pvar constant)
(funcall

(*let «xyzzy (II constant»
t'(lambda (x) (*sum (+11 (II x) xyzzy»

)
(pref pvar 0)

))

37

38 CHAPTER g. POTENTIALLY TROUBLESOME SITUATIONS

Since the body of the *let defining xyzzy has been exited at the time the lambda-defined function
is actually called, the ESSENTIAL *LISP language definition makes no guarantee that the pvar xyzzy
will still contain constant anywhere.

9.3 Using Mapcar on Functions that Return PV'ars

Consider the following code:

(let «pvar-list nil»
{setq pvar-list (mapcar #'11 '(1 23»)
(*set pre-defined-pvar-l

(+!! (first pvar-list) (second pvar-list»)
(*set pre-defined-pvar-2

(+!! (first pvar-list) (second pvar-list»)
)

pvar-list is a list of pvars that have been allocated on the ESSENTIAL *LISP stack. TheES­
SENTIAL *LISP language definition makes no guarantees as to how long these pvars will remain
inviolat'e, since they are on the stack. Thereis absolutely no guarantee that pre-defined-pvar-l
and pre-defined-pvar-2 will contain the same values.

9.4 • Warm-boot

Whenever an ESSENTIAL *LISP program has an error, and the user aborts back to top level, the
*warm-boot function must be called before attempting to run any ESSENTIAL *LISP code again.
This is because the currently selected set of processors is not reset when COMMON LISP aborts back
to top level, and *warm-boot resets the currently selected set to be all processors. Very bizarre
behavior results when this dictate is not followed. The function dis.play-active-processors can
be used to determine the current state of the currently selected set.

I
I
I
I
I 	 Appendix A

Some Example ProgramsI

I

I

.i; -*- SYNTAX: common-lisp; MODE: lisp, BASE: 10; PACKAGE: *LISP-CL: MUSER: YES, Fonts:
CPTPONTB.CPTFDNT -*­

I 	 , ., Cliff Lasser 2/86

·· ... ,
This file contains working examples for the Essential *Lisp manual. ... Although they are in Common Lisp. they do use a couple of ZetaLispI ·•.. , , ••. features: the LOOP macro and 3600 specific terminal control • ·..

I ·..
; ; ; Example # 1: Conway's life

I , , ,

.. ,I 	 ·., Conway's Life is a simple 2-dimensional cellular automata .algorithm.
· , ..., Each cell in the 2-d grid is either alive or dead. A cell becomes alive
; ; . if exactly three of its neighbors are alive. A cell stays alive if two
, , , or three of its neighbors are alive. In all other cases a cell becomes

dead .or remains dead. A cell's neighbors are the cells to its east,I 	 " ,
,., west, north and south, and to its NI, NE, SW and SR.

I

I

I 	

39

I

I

40 	 APPENDIX A. SOME EXAMPLE PROGRAMS

...
i ••

• • , 	This is the main entry point for the Life program. It will do all
initialization, then a few cycles of Life.

(DEFUN DO-LIFE ()
(INITIALIZE-LIFE)
(DISPLAY-LIfE-GRID)
(LIFE~CYCLE 100» :run 100 cycles of life

., ,
This declares a PVAR that exists in all processors. Each cell in the

'" grid is either alive or dead. If the cell is alive, CELL,...AUVE-P will
contain T. If it is dead, it will contain NIL." .

" ,
(*DEFVAR CELL-ALIVE-P)

.,.
j;; This will initialize *Lisp and create a random pattern on the Life grid.

iii By default, 30% of the cells will be alive

,. ,

(DEFUN INITIALIZE-LIFE (&OPTIONAL (p.ERCENT-ON 30)}·

;; Initialize the Connection Machine system (CMS) aIid*Lisp. Remember
:: to always call this before actually doing anything on the CMS.
(*COLD-BOOT)

;: now fill the machine with a random pattern
(*SET CELL-ALIVE-P «II (RANDOM!! (!! 100» (f!PERCENT-DN»)
)

.. , 	This will display the Life grid on the user's terminal

(DEFUN DISPLAY-LIFE-GRID ()
;: clear the. screen (Symbolics 3600 specific code)
(ZL:SEND TV:SELECTED-WINDOW :CLEAR-WINDOW)
;; step through each location on the x-ygrid
(LOOP FOR X FROM 0 BELOW (DIMENSION-SIZE 0)

DO
:; go to next line on screen.
(FORMAT T 11-%")
(LOOP FOR Y FROM 0 BELOW (DIMENSION-SIZE 1)

DO
:; if the cell is alive, print a *. Otherwise, a space

• ••

41

(IF 	 (PREF-GRID CELL-ALlVE-P X Y)

(PRINC "*")

(PRINC " II»»)

...
tot

.0' This function will repeatedly run the Life algorithm and display the life ··.., , grid.

(DEFUN LIFE-CYCLE (NUMBER-OF-CYCLES)
(LOOP FOR CYCLE FROM 0 BELOW NUMBER~OF-CYCLES

DO
;; allocate some temporary storage for counting the number of alive
:! neighbors for each cell in the grid.
(*LET «NUMBER~OF-ALlVE-NEIGHBORS (I' 0»)

:: each cell totals up the number of alive neighbors. Be careful to
;i not include the cell itself in the total.
(LOOP FOR X FROM -1 TO 1

DO
{LOOP FOR Y FROM -1 TO 1

DO
(WHEN (NOT (- 0 X Y»

(*WHEN (PREF-GRID-RELATlVE!1 CELL-ALlVE-P (I! X) (II Y»
:; only those cells with the specific neighbor alive get to

:; increment the count.

(*SET NUMBER-OF-ALIVE-NEIGHBORS

(+11 NUMBER-OF-ALlVE-NEIGHBORS (II 1»»»))

JJ based on the count of alive neighbors, each cell decides whether to
to become alive or dead.

(*SET CELL-ALlVE-P (OR!! (AND!! CELL-ALlVE-P

(=!! (II 2) NUMBER-OF-ALIVE-NEIGHBORS»

(~!I (II 3) NUMBER-OF-ALlVE-NEIGHBORS»»

:: display the life grid.
(DISPLAY-LIFE-GRID)
»

I

I

•• •

•••

•• •

j

I

I

42 	 APPENDIX A. SOME EXAMPLE PROGRAMS

... 	 ~
... Example # 2: Shortest path in a graph .. . I
1
1.. ,

,. , 	In this example. we have the CMS find the shortest path between two cities
in a graph of connected cities. Each connection between cities contains
the distance between the two connected cities.

, .. ., . 	 I
" , The data structure used is very simple: We split up the Connection .. , Machine processors into two sets. The first set represents the cities

themselves. The second set represents the connections between cities 	 I

(*DEFVAR CITY-P NIL "true when this processor contains a city") I(*OEFVAR CONNECTION-P NIL "true when this processor contains a connection item")

(*DEFVAR CITY-NAMES NIL "This contains the name of city for each city processor")
(*DEFVAR CITY-DISTANCE-FROM-START NIL "Distance of a city from the START processor") I
(*DEFVAR CONNECTED-CITY-FROM NIL "One of the cities in a connec.tion")
(*DEFVAR CONNECTED-CITY-TO NIL "The other city in a connection") I(*DEFVAR CONNECTION-DISTANCE NIL ItThe distance between .the connected cities")

I
;; ; 	

1This defines the graph of connected cities

(DEFPARAMETER LIST-OF-ALL-CITI:ES • (NEW-YORK LOS-ANGEI,.ES BOSTON
WASHINGTON SAN-FRANCISCO MIAMI CHICAGO»

(DEFPARAMETER CITY-CONNECTIONS-LIST
'«NEW-YORK (BOSTON 220) (WASHINGTON 500»

(LOS-ANGELES (SAN-FRANCISCO 600) (WASHINGTON 2600»
(BOSTON (NEW-YORK 220) (WASHINGTON 600) (CHICAGO 1000»
(WASHINGTON (NEW-YORK 500) (BOSTON 600) (LOS-ANGELES 2500»
(SAN-FRANCISCO (CHICAGO 1600) (LOS-ANGELES 600»
(MIAMI (CHICAGO 2600»
(CHICAGO (BOSTON 1000) (SAN-FRANCISCO 1600) (MIAMI 2600»»

http:LOS-ANGEI,.ES

•••

I

I

I 	 43

·, .
This is a hash table that contains the processor number assigned to eachI 	 ·..

I
· •..•• of the cities.

•••
(DEFVAR PROCESSORS-FOR-CITIES (MAKE-RASH-TABLE»

·..
Here is the top level f~ctionI 	 · •

•..•• ••

I

(DEFUN DQ-FIND-SHORTEST-PATH (START-CITY STOP-CITY)

(BUILD-GRAPH)

(FlND-SHORTEST-PATH ST~T-CITY)

(PRINT-SHORTEST-PATH STOP-CITY»

I 	 (DEFVAR *NEXT-FREE-PROCESSOR* NIL "This is used to allocate processors")

I
 ; ; ;'

This function will load the graph into the CMS

I
(DEFUN BUILD-GRAPH ()

:i allocate more processors than we will need

(*COLD-BOOT :INITIAL-DlMENSIONS '(100»

I
;; initialize all the processors in the machine to be neither connectioDs
;: nor cities
(*SET CITY-P NIL!I)

(*SET CONNECTION-P NIL!!)

I 	 :; start allocating processors with processor 0
(SETQ *NEXT-FREE-PROCESSOR. 0)

I 	 .•• start by assigning processors to cities. All we have to do is write a T

I
:; into CITY-P, and write the name of the city into CITY-NAMES (this is
;; just a convenience)
(LOOP FOR CITY IN LIST-OF-ALL-CITIES

FOR CITY-PROCESSOR = *NEXT-FREE-PROCESSOR*
DO

(SETF (GETHASH CITY PROCESSORS-FOR-CITIES) CITY-PROCESSOR)

I (SETF (PREF CITY-P CITY-PROCESSOR) T)

(SETF (PREF CITY-NAMES CITY-PROCESSOR) CITY)

I
 (INCF' *NEXT-FREE-PROCESSOR*»

I
I
I

44 	 APPENDIX A. SOME EXAMPLE PROGRAMS

ii loop through all the cities, and set up their connections. This means
writing a T into CONNECTION-P, as well as the cities at both ends of the

.r connection, and the distance between them.
(LOOP FOR ITEM IN CITY-CONNECTIONS-LIST

FOR CITY - (FIRST ITEM)
FOR CONNECTIONS - (REST ITEM)
DO

(LOOP 	 FOR CONNECTION IN CONNECTIONS
FOR CONNECTED-CITY - (FIRST CONNECTION)
FOR DISTANCE (SECOND CONNECTION)a

FOR CONNECTION-PROCESSOR - *NEXT-FREE-PROCESSOR*
DO

(SETF (PREF CONNECTION-P CONNECTION-PROCESSOR) T)
(SETF (PREF CONNECTION-DISTANCE CONNECTION-PROCESSOR) DISTANCE)

(SETF (PREF CONNECTED-CITY-FROM CONNECTION-PROCESSOR)
(GETBASB CITY PROCESSORS-FOR-CITIES))

(SETF (PREF CONNECTED-CITY-TO CONNECTION-PROCESSOR)
(GETBASB CONNECTED-CITY PROCESSORS-FOR":CITIES»

(INCF *NEXT-FREE-PROCESSOR*)
»

" End of building the graph routine
) ...

" r

;;;Here is the actual algorithm for computing the length of the shortest path
;:;between two cities: . .
~

;;;We define one of the two cities as the START city and the other as the
;; ;STOP city.

" .
;;;(1) 	All cities set their distance from the START city to 80me very large

number. The START city sets its distance to zero.

:;;(2) 	All connections fetch the distance pVIlr of their CONNECTED-CITY-FROM. and
add on their CONNECTION-DISTANCE.

;;;(3) 	All connections send the .result of the previous set to their
CONNECTED-CITY-TO. The send is done with a :MIN combiner.

;; :(4) 	All cities set their distance from the START city to the minimum of their
current distance and the value sent by the previous step.

I

I

I 	 45

;::(5) If any city got a newer mimimum distance, then go cycle back to step

I '" (2) again.

I (DEFUN FIND-SHORTEST-PATH (stART-CITY)

i: translate the start city into a processor number

(SETQ START-CITY (GETHASH START-CITY PROCESSORS-FOR-CITIES»

I 	 ,. (1) All cities set their distance from the START to some very large

:: number. The START city sets its distance to zero.

I (*WUEN CITY-P (*SET CITY-DISTANCE-FROM-START (!I 30000»)
(SETF (PREF CITY-DISTANCE-FROM-START START-CITY) 0)

I 	 :; allocate some storage for the computation of the next CITY-DISTANOE-FRbM-START
(*LET «NEW-CITY-DISTANCE-FROM-START CITY-DISTANCE-FROM-START»

I

(LOOP WITH ANY-NEW-DISTANCE-SHORTER-P ;This is T when we need to loop again.

DO ;This will loop until the WHILE ...

: ... 	below is false

I 	 ;; (2) All connections fetch the distance pvar of their CONNECTED-CITY-FROM. and
add on their CONNECTION-DISTANCE.

I
(*WHEN CONNECTION-P

(*LET «DISTANCE-OF-CONNECTED-CITY
(+!! .CONNECTION-DISTANCE (PREF!! 	 CITY-DISTANCE-FROM-START

CONNECTED-CITY-FROM»»

I ::(3) All connections send the result of the previous set to their
CONNECTED-CITY-TO. The send is done with a :MIN combiner.

I 	 (*PSET

I
I
I
I
I
I

:MIN 	 DISTANCE-OF-CONNECTED-CITY
NEW-CITY-DISTANCE-FROM-START
CONNECTED-CITY-TO»)

46 APPENmx A. SOME EXAMPLE PROGRAMS

;;(4) All cities set their distance from the START city to the minimum of
" their current distance and the value sent by the previous step.

(*WHEN CITY-P
(SETQANY-NEW-DISTANCE-SHORTER-P (*OR «!! NEW-CITY-DISTANCE-FROM-START

CITY-DISTANCE-FROM-START»»
(*SET CITY-DISTANCE-FROM-START (MIN!! CITY-DISTANCE-FROM-START

NEW-CITY-DISTANCE-FROM-START»)

j ;(5) If any city got a newer mimimum distance, then go cycle back to
II step (2) again.

WHILE ANY-NEW-DISTANCE-SHORTER-P»

)

" .
This function just simply pulls the distance of the STOP city from the

, .. CMS.

(DEFUN PRINT-SHORTEST-PATH (STOP-CITY)
(FORMAT T "-~ The distance from the START city to the stop city is -d."

(PREF CITY-DISTANCE-FROM-START
(GETHASH STOP-CITY PROCESSORS-FOR-CITIES»»

I
I
I
I
I Appendix B

List of ESSENTIAL *LISP CommandsI

I

I

This section contains a list of a.ll ESSENTIAL *LISP commands described in this manual, grouped
according to functionality. For a more deta.iled description of any command, refer to the indicated
page number.

I Configuration Constants:

number-of-processors-limit. page 11

I *log-number-of-processors-limit*. page 12

number·of-dimensions. page 12

I t! I, page 12

I nil I !. page 12

Pvar Operations:

I *defvar symbol ~optional pvar documentation-string. page 13

I allocate!! ~optional pvar. page 14

*deallocate pvar. page 14

I pvarp object, page 14

type-of!! pvar, page 14

I
I

47

I

I

J

1

48 APPENDIX B.. LIST OF ESSENTIAL *LISP COMMANDS ~
i

Temporary Allocation:

let ({(symbol loptional pvar)}) lrest body, page 16

let ({(symbol loptional pvar)}*) lrest body. page 16

Setting the Contents of a Poor:

set {pvar-l pvar-2}. page 16

Reading and Writing the Memory:

I
•pref pvar address, page 16

(setf (pref pvar address) lisp-expression)

pref-grid pvar lrest addresstis, page 16

(setf (pref-grid pvar lrest addresses) lisp-expression)

Selecting the Active Processors:

*all lrest body, page 18

*when pvar lrest body, page 18

cond {(pvar {form}}}*. page 18

*if pvar then-form loptional else-form. page 19

with-css-saved {form}*. page 19

do-for-selected-procesaors (symbol) lreat body, page 19

Predicate !! Functions:

-I! numeric-pvar lrest numeric-pvars, page 21

/=I! numeric-pvar lrest numeric-pvars. page 21

<I! numeric-pvar lrest numeric-pvars. page 22

>! 1 numeric-pvar treat numeric-pvars, page 22

49

<=!! numeric-pvar "rest numeric-pvars. page 22

>-!! numeric-pvar "rest numeric-pvars, page 22

Bit Manipulation II Functions:

lognot! ! integer-pvar, page 22

logior! I "rest integer-pvars. page 22

16gxor! ! "rest integer-pvars. page 22

logand! ! "rest integer-pvars. page 23

logeqvll "rest integer-pvars. page 23

Boolean!! Functions:

and! I "rest pvus. page 23

or! ! "rest pvars. page 23

xor!! "rest pvars, page 23

eql!! pvarl pvar2. page 23

eq!! pvarl pvar2. page 23

not!! pvar. page 24

integerp!! pvar. page 23

floatp!! pvar, page 23

numberp!! pvar. page 24

50

I

I

I

I

I
,

APPENDIX B. LIST OF ESSENTIAL *LISP COMMANDS

Numerical!! Functions

I! lisp-expression, page 24

+!! &rest numeric-pvars, page 24

-I! numeric~pvar &rest numeric-pvars. page 24

*!! &rest numeric-pvars. page 24

/!! numeric-pvar trest numeric-pvars. page 24

1+!! numeric-pvar. page 24

1-!! numeric-pvar. page 24

min!! numeric-pvar trest numeric-pvars. 24

max!! numeric-pvar trest numeric-pvars. 25

mod! I numeric-pvar integer-pvar, 25

truncate I I numeric-pvar, page 25

float!! numeric-pvar. page 25

sqrt!! non-negative-pvar. page 25

random!! limit-pvar. page 25

Miscellaneous !! Functions

load-byte I I from-pvar position-pvar size-pvar. page 25

deposit-byte!! into-pvar position-pvar size-pvar byte-pvar, page 25

if!! pvar then-pvar else-pvar. page 26

cond!1 {(pvar {form}*)}*. page 26

enumerate!! pvar, page 26

51

User !! arl,d * Functions:

*defun, page 27

*funcall function trest arguments, page 27

*apply function arg toptional more-args, page 27

Parallel Memory Operations:

pref!! pvar-expression cube-address-pvar, page 28
(setf (pref!! dest-pvar-expression cube-address-pvar) value-pvar)

prei-grid!! pvar-expression trest pvar-addresses &key border-pvar, page 28

pref-grid-relative!! pvar trest relative-pvar-addresses lkey border-pvar. page 29

.pset combinator value~pvar dest-pvar cube-address-pvar. page 29
where combinator is one of :default. :overwrite. :or. :and. :logior. :logand. : add,
:min. :max

*pset-grid combinator value-pvar dest-pvar lrest grid-address-pvars. page 30

Address Translation and Related Functions:

dimension-size dimension, page 12

self-address!!, page 31

self-address-grid!! dimension-pvar. page 31
grid-from-cube-address cube-address dimension. page 31

cube-from-grid-address address-pvar lrest address-pvars, page 32

grid-from-cube-address!! cube-address-pvar dimension-pvar, page 32

cube~from-grid-address!! address-pvar lrest address-pvars. page 32

i -

52 APPENDIX B. LIST OF ESSENTIAL *LISP COMMANDS

Global Operations:

*logior integer-pvar, page 33

*logand integer-pvar, page 33

*min numeric-pvar, page 33

*maX numeric-pvar, page 33

*or pvar, page 33 I
*and pvar. page 33 I
*sum numeric-pvar. page 33

*product numeric-pvar. page 34 I
Initialization:

I*cold-boot lkey initial-dimensions, page 35

*warm-bo.ot, page 36 I

I

http:warm-bo.ot

Bibliography

[Hillis 85] 	 W. Daniel Hillis. The Oonnection Machine. MIT Press (Cambridge, Massa.chusetts,
1985).

[Steele 841 Guy L. Steele, Jr. Oommon Lisp: The Language. Digital Press (Billerica, Massachusetts,
1984).

53

