2014-06-21 FDなんて飾りです
小学校の授業参観。円の面積を求めるのに、円を16分割した扇型を使って平行四辺形ないし三角形を作らせ、平行四辺形の面積を求める公式と円周を求める公式から、面積の公式を導出する。良い授業だ。
私の子供の頃は天下り的に公式を覚えさせられたような気がするが(ちゃんと理屈を教わったけど忘れただけと言う可能性が否定できないのが中年の悲しさだが)、もしそうだとしたら、教育技術はこの数十年で向上していると言っていいのではないか。実際、授業参観に行くといつも、今の先生の高い技術に感心させられる。皆さん研究熱心なのだ。
だけど、このような高い技術が、今の子の学力を昔に比べて高めているかというと、ちょっとそれはよくわからない。私の思う良い教育法は、単に大人の目から見て良いだけであって、当の子らにはピント外れなものなのだろうか?それとも、教育法の向上は本来なら生じていた学力低下を食い止めることで、ちゃんと役に立っているのだろうか?
無頼庵日成 2014/06/22 20:59 授業でやったかどうかは覚えてませんが、教科書にはそのやり方書いてあったと思います。
kensuke_nakata 2014/06/22 21:46 あー、やっぱそうだったんですか。じゃあ、昔から良い教育が行われていたけど、私には無効だったと言うことなのか。ごめんなさい小学校の先生。
無頼庵日成 2014/06/22 22:46 でもまあ、当時の教師は公式丸暗記を推奨してたんじゃないかしらね。私は単に授業聴かないで、ヒマだけど他に読める活字ないので仕方なしに教科書読んでただけなので。
kensuke_nakata 2014/06/22 22:48 さすが無頼庵先生は出来が違う。私なんてずっとぼんやり外を眺めていたものです。
無頼庵日成 2014/06/22 23:26 キー。貴殿に言われたかないわい。