人工知能に関する断創録

人工知能、認知科学、心理学、ロボティクス、生物学、ゲームAIなどに興味を持っています。このブログでは人工知能のさまざまな分野について調査したことをまとめています。最近は、音声認識・音声合成、複雑系(カオス、力学系)、Deep Learning、Unityなど。



Pythonによるモンテカルロ法入門

PRMLの11章で出てくるマルコフ連鎖モンテカルロ法(Markov chain Monte Carlo methods: MCMC)。ベイズでは必須と呼ばれる手法だけれどいまいち理屈もありがたみもよくわからなくて読み飛ばしていました。

最近、ボルツマンマシンを勉強していて、ベイズと関係ないのにマルコフ連鎖やらギブスサンプラーやらが出てきて本格的にわからなくなってきたのでここらで気合を入れて勉強し直すことにしました。

参考にした書籍は「Rによるモンテカルロ法入門」です。PRMLと同じく黄色い本なので難易度が高そう・・・この本はR言語を使って説明がされていますが、それをPythonで実装しなおしてみようかなーと計画中。numpy、scipyの知らなかった機能をたくさん使うので勉強になりそう。

ただRにしかないパッケージを使われると途中で挫折する可能性が高い・・・あと内容が難しすぎて途中で挫折する可能性も高い・・・

Rによるモンテカルロ法入門

Rによるモンテカルロ法入門

このページはまとめページにしようと思います。参考文献も追加予定。

目次

  • 一様分布のシミュレーション
  • 逆変換法
  • 一般変換法
  • Box-Mullerアルゴリズム