早稲田大学の博士論文のコピペ発覚リスト (計21名)
常田聡 研究室: 小保方晴子、松本慎也、古川和寛、寺原猛、岸田直裕、副島孝一、寺田昭彦(ラボ内コピペ) (計7名)
西出宏之 研究室: 義原直、加藤文昭、高橋克行、伊部武史 (計4名)
武岡真司 研究室: 藤枝俊宣、小幡洋輔、寺村裕治、岡村陽介(ラボ内コピペ) (計4名)
平田彰 研究室: 吉江幸子(ラボ内コピペ)、日比谷和明(ラボ内コピペ) (計2名)
黒田一幸 研究室: 藤本泰弘 (計1名)
(早稲田大学リポジトリ)
調査1: 藤本泰弘氏(早稲田大学の黒田一幸氏の研究室)の博士論文における文章のコピペについてのまとめ
著者: 藤本泰弘
論文題目: 開裂可能な共有結合を有するオルガノシランからのシリカ系ナノ構造材料の合成
http://dspace.wul.waseda.ac.jp/dspace/handle/2065/5347
出版日: 2006年2月
審査員:
(主査)早稲田大学教授 工学博士(早稲田大学)黒田 一幸
(副査)早稲田大学教授 工学博士(早稲田大学) 逢坂 哲彌
(副査)早稲田大学教授 工学博士(早稲田大学) 菅原 義之
(副査)早稲田大学教授 (工学) 早稲田大学 本間 敬之
博士論文概要 (写し)
博士論文審査報告書 (写し)
論文本文 (写し)
匿名さんのコメント(2014年3月25日 9:24)で指摘されました。
1.1.1. Classification and general strategies for the design of inorganic–organic nanostructured materials
は、それなりに改変が入っていますが、
C Sanchez氏らのJournal of Materials Chemistry 15 (2005), Nr.35-36, S.3559-3592の論文
C Sanchez氏らの著作物「Journal of Materials Chemistry 15 (35-36), 3559 (2005).」のCHAPTERIII
C Sanchez氏らの著作物「Journal of Materials Chemistry 15 (35-36), 3559 (2005).」のCHAPTERIV
C Sanchez氏らの著作物「J. Mater. Chem., 2005, 15, 3559–3592」
以上の文章を継ぎ接ぎして構成されています。
同一文章1 :黄色でハイライトされた部分がC Sanchez氏らのJournal of Materials Chemistry 15 (2005), Nr.35-36, S.3559-3592の論文と同一文章。黄緑色はC Sanchez氏らの著作物「Journal of Materials Chemistry 15 (35-36), 3559 (2005).」のCHAPTERIIIと同一文章。紫色がC Sanchez氏らの著作物「J. Mater. Chem., 2005, 15, 3559–3592」と同一文章。水色はC Sanchez氏らの著作物「Journal of Materials Chemistry 15 (35-36), 3559 (2005).」のCHAPTERIVと同一文章。
1.1.1 Classification and general strategies for the design of inorganic–organic nanostructured materials
Inorganic–organic nanocomposites do not represent only a creative alternative to design new materials and compounds for academic research, but their improved or unusual features allow the development of innovative industrial applications. For a long time the properties of inorganic materials (metals, ceramics, glasses, etc.) and organic compounds (polymers, etc.) shaped as bulks, fibers or coatings have been investigated with regard to their applications, promoting the evolution of civilizations. During the last fifty years with the help of new analysis techniques and spectroscopic methods the structure/properties relationships of these materials became clearer and their general properties, tendencies and performances are well known. The inorganic components provide mechanical and thermal stability, but also new functionalities that depend on the chemical nature, the structure, the size, and crystallinity of the inorganic phase. But, other properties such as hydrophobic/hydrophilic balance, chemical stability, bio-compatibility, optical and/or electronic properties and chemical functionalities (i.e. solvation, wettability, templating effect, etc.) have to be considered in the choice of the organic component. The organic in many cases allows also easy shaping and better processing of the materials. However, the final materials are not only the sum of the primary components and a large synergy effect is expected from the close coexistence of the two phases through size domain effects and nature of the interfaces. Therefore, many of promising functional hybrid materials have significant commercial potential.
As mentioned above, the properties of the resulting materials are governed not only by the properties of individual phases but also by the nature of interface of both phases. On the structural point of view, inorganic–organic nanocomposites are generally divided into two classes as shown below.1
Class 1 : Inorganic and organic components are linked by weak interactions
Class 2 : Both phases are linked by strong chemical bonds
Class I corresponds to all the systems where no covalent bonds are present between the organic and inorganic components. In such materials, the various components exchange only weak interactions (at least in terms of orbital overlap) such as hydrogen bonding, van der Waals contacts, or electrostatic forces. In contrast, in class II materials, at least a fraction of the organic and inorganic components are linked through strong chemical bonds (covalent, iono-covalent, or Lewis acid-base bonds). The chemical strategy followed for the construction of class II hybrid networks depends, of course, on the relative stability of the chemical links that associate the different components. Therefore, the control of inorganic–organic interface plays an important role to desingn properties of final products. For example, the class I materials have useful abilities such as the exchange of organic species and the conversion into nanostructured inorganic products (nanosheets, mesoporous, etc.) by the removal of organic species. On the other hand, compared with class I materials, class II materials are tend to have higher mechanical and thermal stabilities. Furthermore, novel functions arising from ordered arrangements of guest species in the interlayer region can be expected.
Independent of the nature of the interface between the organic and inorganic components, a second important feature in tailoring hybrid networks concerns thechemical pathways that are used to design a given hybrid material. These main chemical routes are listed below.
(1) Conventional sol–gel pathways. The sol–gel process2 is widely employed due to their advantages such as low temperature processing, high purity and homogeneity of final products. In addition, this process allows the morphological control of the products in the form of film, fiber, bulk, etc. In general, amorphous hybrid networks are obtained through hydrolysis of organically modified metal alkoxides or metal halides condensed with or without simple metallic alkoxides. The solvent may or may not contain a specific organic molecule, a biocomponent or polyfunctional polymers that can be crosslinkable or that can interact or be trapped within the inorganic components. Better academic understanding and control of the nanostructure of the hybrid materials and their degree of organization are important issues, especially if in the future tailored properties are sought. In the past 15 years, a new field has been explored that corresponds to the organization or texturing of growing inorganic or hybrid networks, templated by organic structure-directing agents. Details are described in the section 1.3.1.
(2) Intercalation method. Naturally occurring or synthetic crystals of layered structure, such as clays, can be intercalated with inorganic and organic species to generate bi-dimensional nanocomposites. The layered crystals are of two types: (1) with an unbalanced charge on the layers and (2) neutral layers. The main intercalation-type composites are classified into the pillared clays, metal-intercalated clays and clay-organic composites.
(3) Hydrothermal synthesis. Hydrothermal synthesis in polar solvents (water, formamide, etc.) in the presence of organic templates had given rise to numerous zeolites with an extensive number of applications in the domain of adsorbents or catalysts. More recently a new generation of crystalline microporous hybrid solids have been discovered by several groups (Yaghi,3 Ferey,4–8 Cheetham and Rao9). These hybrid materials exhibit very high surface areas (from 1000 to 4500 m2 g–1) and present hydrogen uptakes of about 3.8 wt% at 77 K.3–9 Moreover, some of these new hybrids can also present magnetic or electronic properties.5,10 These hybrid MOF (Metal Organic Frameworks) are very promising candidates for catalytic and gas adsorption based applications.3
(4) nanobuilding block approaches. This is a suitable method to reach a better definition of the inorganic component. These nanobuilding blocks (NBB) can be clusters, organically pre- or postfunctionalized nanoparticles (metallic oxides, metals, chalcogenides, etc.), or nano-core–shells.11 These NBB can be capped with polymerizable ligands or connected through organic spacers, like telechelic molecules or polymers, or functional dendrimers. The use of highly pre-condensed species presents several advantages:
・they exhibit a lower reactivity towards hydrolysis or attack of nucleophilic moieties than metal alkoxides;
・the nanobuilding components are nanometric, monodispersed, and with better defined structures, which facilitates the characterization of the final materials.
黒田一幸 教授 の研究室
望月 大(主査 黒田 一幸教授) 2006年
博士論文 「Synthesis of novel ordered silica frameworks by silylation of layered silicates」
山内 悠輔(主査 黒田 一幸教授) 2007年
博士論文 「リオトロピック液晶相を用いたメソポーラス金属及び関連するナノ材料の合成と構造」
鈴木 崇志(主査 黒田 一幸教授) 2008年
博士論文 「細孔配列が高度に制御されたメソ多孔体薄膜の作製」
秦 英夫(主査 黒田 一幸教授) 2009年
博士論文 「層表面制御による層状酸化物への機能物質のインターカレーションによるハイブリッド材料の合成と応用」
萩原 快朗(主査 黒田 一幸教授) 2010年
博士論文 「シリカ-有機ハイブリッド材料のビルディングブロックとしての二重四員環ケイ酸塩のアルコキシシリル化 Alkoxysilylation of Double Four-Membered Ring Silicates as Building Blocks of Silica-Organic Hybrid Materials」
那須 慎太郎(主査 黒田一幸教授) 2010年
博士論文 「Preparation of Mesostructured Inorganic-Organic Hybrids by Self-Assembly of Amphiphilic Molecules Containing Chromophores」
博士論文 「種々のコロイド粒子集積体を利用した無機階層構造材料の形成 Formation of Inorganic Hierarchically Structured Materials by Utilizing Assemblies of Various Colloidal Particles」
高橋 信行(主査 黒田 一幸教授) 2011年
博士論文 「層状ケイ酸塩の層表面化学修飾とナノ構造材料への変換 Chemical Modification of Interlayer Surfaces of Layered Silicates and Transformation to Nanostructured Materials」
浦田 千尋(主査 黒田一幸教授) 2011年
博士論文 「高度に制御されたコロイド状メソ構造ナノ粒子の調製と特性 Preparation of Highly Controlled Colloidal Mesostructured Nanoparticles and Their Properties」
河原 一文(主査 黒田一幸教授) 2012年
博士論文 「Synthesis of building blocks consisting of oligomeric silicates for preparation of silica-based hybrid materials」
島田 智子(主査 黒田一幸教授) 2012年
博士論文 「ペプチド両親媒性分子の紐状ミセル形成過程に関する研究 Study on the Formation Processes of Wormlike Micelles Derived from Peptide Amphiphiles」
高井 あずさ(主査 黒田一幸教授) 2012年
博士論文 「Composition, Structure, and Morphology Control of Mesoporous and Nanostructured Metals」
崔 珖敏 Choi, Kwang-Min (主査 黒田一幸教授) 2012年
博士論文 「Preparation of Highly Controlled SiO2 Based Materials with Meso-scale Length by Combining Bottom-up Methods」
若林 隆太郎(主査 黒田一幸教授) 2012年
博士論文 「Synthesis of alkoxysilanes through selective cleavage of C-O bonds」
菅野 陽将(主査 黒田 一幸教授) 2013年
博士論文 「金属ナノ構造体の作製に向けたメソポーラスシリカ薄膜の有効利用 Effective Use of Mesoporous Silica Films for the Preparation of Nanostructured Metals」
藤本泰弘氏の論文ですが、(2) Intercalation method.の
返信削除”Naturally occurring or synthetic crystals of ~”
という部分は、
"Chemical Processing of Ceramics, Second Edition"
http://books.google.co.jp/books?id=Q58c6SBVnC0C&pg=PA349&lpg=PA349&dq=The+layered+crystals+are+of+two+types:+(1)+with+an+unbalanced+charge+on+the+layers+and+(2)+neutral+layers&source=bl&ots=vl4z7cw-mP&sig=PpnfhncV04VS5Jp-bDvuYTR3_nA&hl=ja&sa=X&ei=RSUyU5CiMImZkAWM-oGIBA&ved=0CDAQ6AEwAA#v=onepage&q=The%20layered%20crystals%20are%20of%20two%20types%3A%20(1)%20with%20an%20unbalanced%20charge%20on%20the%20layers%20and%20(2)%20neutral%20layers&f=false
からの剽窃ですね。
その上の
"In the past 15 years, a new field has been ~"
という部分も、
”C Sanchez氏らのJournal of Materials Chemistry 15 (2005), Nr.35-36, S.3559-3592”
に
"In the last ten years, a new field has been ~"
というセンテンスがあり、その改変のようです。
「リオトロピック液晶相を用いたメソポーラス金属及び関連するナノ材料の合成と構造」は大変おもしろそうです。なぜか手に入りません。
返信削除