16
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M. V. Berry
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1. INTRODUCTION

The aim here is to describe some recent advances in the under-
standing of classical systems. As is often the case, these advances
have been made with the aid of, and have led to, deep theorems in
pure mathematics, couched in language unfamiliar to physicists.
Concurrently, numerical experiments, extensively carried out by as-
tronomers, have iiluminated similar problems from a different point
of view. Reviews bringing these approaches together are now appear-
ing along with second-order reviews 1ike this one. The bibliography
is intended as a guide; further references may be found in the works
cited and in other articles in this volume,

Over the last century attention has shifted from the computa-
tion of individual orbits towards the qualitative properties of
families of orbits. For example, the guestion of whether a given
orbit is stable can only be answered by studying the development
of al] orbits whose initial conditions are in some sense "close
to" those of the orbit being studied. More generally, one can con-
sider all orbits of a given system - defined by a given Hamiltonian -
and inguire whether all, or “almost 2il" or "most" or "hardly any”
are stable. More generally still, one can consider all possible
Hamiltonian functions within some class, and seek the “generic"
or typical behavior of its family of orbits. Finally, one can ask
whether Hamiitonian systems display properties typical of the wider
class of "dynamical systems" which may be dissipative and not de-
scribable by a Hamiltonian function (they do not).

One motivation for such studies is the feeling that after three
hundred years we really ought to know what Newton's equations are
telling us about the qualitative behavior of conservative systems
with two degrees of freadom. And yet the orbits of a point mass m
in the potential (fig. 1)

2
V= %T + ar3 sin 38

have only begun to be understood in detail in the last decade or so.
Another motivation is the desire to know whether the solar
system, and the galaxy, are stable under the mutual perturbations
of their constituents, or whether they will eventually collapse or
disperse to infinity.
Another motivation is in the foundations of statistical mech-
anics. In that subject no attempt is made to foilow the detailed
motion of all the constituents of a complicated system of many inter-
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acting bodies. Instead, we are content with a knowledge of the
macroscopic observables, which are assumed to involve long-time
averages over the motion of the bodies. Even these are too diffi-
cult to calculate, and a further assumption is made - the famous
"ergodic hypothesis". This is that over the course of time the
system explores the whole of the region of phase space that is
energetically available to it (the "energy surface"}, and eventually
covers this region uniformly. Time averages can thus be replaced

by averages over the energy surface in phase space, and statistical
mechanics becomes a going concern,

But is the ergodic hypothesis true? No. In general it is
false. It is not the case that all systems explore the whole of the
available energy surface in phase space. In the standard "inte-
grable" problems of the classical mechanics textbooks - the Kepler
problem, n-dimensional harmonic oscillators, etc. - we shall see
that systems expiore infinitesimal fractions of the energy surfaces.
Perhaps ergodic behavior appears the moment an "integrable" system
is subjected to a "non-integrable" perturbation? Fermi beljeved
this, but it too is false as we shall see. Then what systems are
ergodic? This is still not known, although at last it has been
shown that the system consisting of two or more interacting hard
spheres is ergodic, so that statistical mechanics is valid in this
case.

These results might seem somewhat meagre, justifying the theo-
retical physicists' traditional skepticism about the value of
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"ergodic theory". But a by-product of the analysis has been the
discovery of a vast realm of "stochastic" behavior between the
extremes of the integrable and the ergodic and some understanding
of how deterministic systems can exhibit motion which in some re-
spects is as random as the tossing of a coin.

Yet another motivation is that some formulations of classical
and quantum mechanics arz so simiiar, any advance in classical me-
chanics ought to lead to advances in quantum mechanics. In par-
ticular, any transition of classical orbits from regular to random
ought to be refiected in the form of the wave functions for quantum
states, and in the distribution of quantum energy levels, egpecially
in the semi-classical Timit where these are densely distributed.

Proper discussion of these subjects invoives topology, number
theory, smooth mappings and other branches of pure mathematics.

My treatment will be intuitive rather than rigorous.

2. INTEGRABLE SYSTEMS AND INVARIANT TORI*

We begin with integrable systems for which the solution of
Newton's equations can be reduced to the solution of a set of simul-
taneous equations, followed by integrations over single variables.
We restrict ourselves to (nondissipative) systems describable by
a Hamiltonian function

H(q.p) »

where there are N degrees of freedom and, g = (q1...qi...qN) is
the system's configuration and p = (p1...pN) js the canonical mo-

mentum vector conjugate to g. Occasionally, we may allow H to have
an explicit time dependence but almost always we shall treat con-
servative systems. The history g(t) of the system is found by
solving Hamilton's equations

q- v, H (2.1.a)

0=-VH 2.1.b
g { )

with given initial conditions {g(0), p{0)}. Of course, the first
Hamilton equation (a) can be used to obtain p when g and g are
known {eq. for a non-relativistic mass point p=mg}, so it is natural
and useful to describe the system's motion in phase space {q. p)
and from here on that is what we shall do.

A completely integrable system is one where there exist N
independent analytic single-valued first integrals, that is N func-
tions

%@;m T<m<N

* App, 26 of Ref. 2 and Ch. 2 of Ref. 4.
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that are constant along each trajectory of the system. For a con-
servative system one of these can be taken as the energy - the
Hamiltonian itself. For a particle acted on by central forces
only, three integrals of motion are the components of angular mo-
mentum

L=gip, (2.2)

where g is measured from the centre of force.
Along any trajectory, the Fm's take constant values fm, and

the N equations
Flg, p) = f. (2.3)

can be solved for p in terms of g and the f's. We can consider
the F's to be the new momenta

p=F (={F }}

in a canonical transformation to new variables (g, p) in phase
space. Since we know the P's to be constant, the new Hamilton equa-
tion (2.1.b) shows that the new Hamiltonian cannot depend on the

new §'s, so the first Hamiltonian equation gives

q-= 73 (H(R)= 7 H(£) = const. (2.4)
or
q(t) = Vf_ H(f)t +% . {2.5)
constants

The problem is solved if we can express § in terms of the old co-
ordinates g. This is achieved by demanding that the transformation

(g, p) - (g p)

be canonical. This in turn can beaccomplished with the generating
function

s{g.p) = fgﬂ(g@'iq = Iﬂp_(&,i)'iq = $(g.f) , (2.6)
99 99

where p(q,f) is obtained from (2.3). Standard theory yields
q = V¢ 8{g,f) (2.7)
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thus the solution gq(t;f,§) via (2.5) (the f,8 are the 2n constants
required to define a sofution). All exactly-soluble systems in
classical mechanics are integrable in this sense.

Of course, it is necessary for the constants of motion Fm(g}g)

to ge independent and in addition the following condition must also
hold:

VEFm -ngn - Vﬂrnvgfm

£ Poisson bracket {Fm,Fn} =0 for allm, n
(2.8)

The F's are then said to be "in involution".
The existence of the N Fm's implies that each trajectory of

the system can explore at most an N-dimensional manifeld M in the
2N-dimensional phase space. Except for the trivial case of N=1,

this is smaliler than the energy surface E, which has 2N-1 dimen-

sions. Therefore the ergodic hypothesis is false in general. A

tabie might help here:

Number of degrees of freedom: 1 2 3 N
Dimensionality of phase space 2 4 6 2N
" E 1 3 5 2N-1
" M 1 2 3 N

It will be important to know what sort of manifold M is, and
we show now that M is an N-dimensional forus: construct the fol-
Towing N vector fields V in phase space:

v, = (VBFm s -ngm) s {(2.9)

i.e. the Um's have 2N components.
On each M, defined by fixing the fm's in (2.3), the Vm's are
smooth and independent (because the Fm's are), and moreover the
V's are panallel to M, since by virtue of (2.8} each v, is perpen-
dicular to all normals to M:
Um (ngn s VEFm) | (2.10)

= {Fm, Fn} = 0 for all m,n.

We restrict ourselves to "bound" motion in which the region of ac-
cessible phase space is finite. Then M is a compact manifold. Now
we make use of a theorem in topology which states that a compact
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manifold "parallelizable” with N smooth independent vector fields
must be an i-torus. This is intuitively obvious from Fig. 2.

Fig. 2

(Colloquially, if M were hairy, we could comb it without singular-
ity in N ways.)

These tori are called .{nvariant fonl because an orbit starting
out on one remains on one forever. It is natural to coordinatize
phase space using the (q,p) defined earlier, since then P = f de-
fines which torus we are on and g are coordinates on the torus.
But there are many ways of doing this, corresponding to taking not
the original F_'s but any functions of them (which are still con-
stants of motign). However, there is one standard way, that leads
to the introduction of so-called action-angle variabfes. These
are topologically natural, and widely employed in analytical me-
chanics. The variables have the foilowing symbols:

8 = q = angfes on torus

_ (2.11)
1 =p = actions of torus

The definition is based on the observation that the generating
function in (2.6), S(g,p), is generally multivalued because the
momenta p defined by %2.3) can be muitivalued - when a system re-
turns to a given point g it need not have the same momentum p.
Therefore S depends on the path 9,™- But the path must certainly
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Tie on M since otherwise (cf. 2.3) p(q,f) is not defined. Now for
different paths 959 on M that are deformable into one another $

is certainly the same, because it is the solution of a Hamilton-
Jacobi equation
H(g,Vﬁs(ﬂ,ﬁ) = H(f) . (2.12)

This means roughly speaking, that S is locally sing]e-va1ued.- It
follows that for closed circuits qg™dgp On M that can be shrunk to

zero, 5=0. But on an N-torus there are N independent irreducible
circuits Y; that cannot be shrunk to zero, and this defines N in-

crements AS that S can gain on returning to the same point q. The
action variables are defined by

I

é%-f pedg = E%F = sum of areas of N projections
Y4
of Y; on planes 1Py 209Pgs- - QyPy (2.13)

= gi for ith circuit on M

This defines the N I's in terms of the N f's and vice versa.
For a conservative system the energy H is one of the f's and hence
can be expressed as a function of the I's:

H=H(I) - (2.14)

The I's define the torus M. The coordinates orn M are the “angles"”
© canonically conjugate to I:

0 = v, S(g1). (2.15)

The reason for calling them angles is that ei changes by 2%, and

ei#j do not change as we traverse circuit Y; on M:
(46;) =4, 2> (q,1)
1 vs ol
Y 1 1
i
2
=——4 S (2.186)
aly Ty
- _9© -
= 510 ZﬂIj ZwSi’j

1
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This means that in the canonical transformation

o)
e
piil

the q's and p's are periodic functions of @ with perioed 2m:

im-@ ine

= (1) s P = I 2.18
q éﬂm_e ) l%;zf_q(_)e (2.18)

where m is & N-dimensional lattice vector (i.e. integer components).
Soon we shall see what a pleasant picture of the motion this gives.
Meanwhile,we illustrate the formalism with a few examples:

Swing (fig. 3)

q

™3

Fig. 3

The motion is one-dimensional:

Lagrangian
L= %—m(l&)z - mgt{-cosq) (2.19)
KE PE
p = melq s
3q
Hamil?onian 2
H=pg-L = -E_f + mga{-cosq) , (2.20)

2mi
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which yields the equations of motion-

ﬁ = _E?_, ﬁ = -mgt sing . (2.21)
or m
§= - %sinq , (2.22)

as is well known. There is one constant of motion, H itself (=f).
Therefore, the manifold M is

E—E-mgﬂ cosq = T ,

2mg

i.e. plq,f) = ¢ém22(f+mgﬂ cosq) . {2.23)

AL2 these curves M (1-dimensional) in phase space are closed because
q+2m <+ q S0 that phase space is really cylindrical (fig. 4}.

W
/

SO\
—

[

/

Fig. 4

The closed curves are the tori. These are of two kinds:



"1ipbrations" between fixed limits of q, for f < mge (fig. 5)

P

Fig. 5

and "rotations" with q increasing or decreasing forever for f >
mot (fig. 6)

\_,)\separate
e / tori

Fig. 6
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These are separated by a self crossing curve (fig. 7} corresponding
to T = mgl.

P

Fig. 7

The action is

1 5'£F § p-dq = %% | Vgﬁlz(f+mgﬂ cosq) , (2.24)
0

which implicitly defines the "action" Hamiltonian (fig. 8).

H free rotor
\_

\\

separat rix

\_linear
-mgl oscillator

Fig. 8
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2-D HARMONIC OSCILLATOR

tere,
B e, ug
Hap) =5+ 5+ —5+ 5 (2.25)
The two constants of motion are (energy in each mode)
2
L
AT R Tl i (2.26)

The Gy and % motions are uncoupled, hence these give the irreduc-
ible circuits Ty and Yoo and (fig. 2):

Pi s

)

vl

Fig. 9

q 1 i
= 'Q'FJ‘ p1dq1 = "z"ﬁ'é ‘/Z(F'l' ]Q-| )dq]
¥

1

—
|

%F x area of ellipse

F
2F 1 i
o Lo Gy (2.27)

[t}
]__l
3
|
n
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Therefore, the Hamiltonian in action variables is

+F + L, (2.28)

H{L) = Fy + Fy = Ljwy + Lo,

]

and I.I and I2 are related as in Fig. 19.

4
1t

Fig, 10
PLANE MOTION UNDER CENMTRAL FORCE

The Hamiltonian is

H DE + pg + V(r) (2.29)
= 5 r} ., .
2m 2mr2 -

for the geometry of Fig. 11 and the potential of Fig. 1Z.

——

Fig. 11 Fig. 12
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Constants of motion:
Fy = H, Fp - pe(=:in~20) . (2.30)

Irreducible circuits are libration in r and rotation in 8.

F, 2%

.t -2 4o =
1y * 7y f pg @0 21T£ do = F, , (2.31)
-1
I] T o2m § Py dr
© 12
- B pon(F - =25 - v ar (2.32)
0 Zmr

which defines the Hamiltonian (fig. 13) as

H(I],IZ) = F1(I1,12) . (2.33)

1,

>]

Fig. 13
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In terms of general action-angle theory, the Hamiltonian (2.14)
yields the equations of motion

1= const., @ = v, H(I) = const. , (2.38)
ar
oft) = ()t + 8 , (2.35)

where § represents N constants and

w(l) = v H(I) (the frequency vector on the torus I} . (2.36)

Thus (2.18) gives the motion as

(2.37)

This shows that the system's orbit on M is multiply periodic with
the N periods

T, =21 (2.38)

for a circuit round 9;-
If the orbit on M is closed, i.e. if for some 7

e{t) = 9(0) + 27N , (2.39)

then it does not fil1 M but onTy occupies a one-dimensional region

on M (fig. 14).

Fig. 14
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If the orbit never cfoses, it traverses a helix on M which covers

it densely after infinite time (fig. 15). This is "ergodicity on

M" though not on the energy surface, and not of any stochastic char-
acter.

Fig. 15

Now which of these situations is typical? To get closure,
the frequencies w must be commensurable; this condition can be writ-
ten in either of the following ways: ;

w=Nw (N isa vector with integer components )
or N-1 relations w-m = 0 hold (m a finite non-zero vector (2.40)
with integer components).
in general, closure occurs after N1 circuits of @], 9 circuits
of 92...NN circuits of By with period

T:—::__...._l-=_-i.. (2_41)

From number theory (as we shall see later) commensurability is the
exception rather than the rule and {2.40) holds only for a set of
w's, i.e. tori I, of zero measure. (If s relations w.m = 0 hold,
where s<N-1, the orbit is not closed but inhabits a submanifold of
dimensionality N-s on M. The exceptional tori form a (dense) set

of measure zero on which the tori are closed or partially closed.)
3. CANONICAL PERTURBATION THEORY FOR HONINTEGRABLE SYSTEMS*

Is integrability the rule or the exception? If all systems
were integrable, the constants of motion F _(g,p) would always

exist, and our inability to determine them for all but the simplest

*Some of this material is covered in: Ch. 9 of Ref. 5, Ch. 4 of
Ref. 4, Ch. 1 of Ref. 1, Sec. 2-3d of Ref. 17, and Ref. 9.
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problems would merely reflect our lack of analytical ingenuity.

But it might be that integrable Hamiltonians form a very small set
{possibly of zero measure}, and the slightest perturbation of such
a Hamiltonian would render the Fm non-existent (except the energy

for conservative cases} and destroy the tori M so that each system
trajectory would in the course of time fill a region in phase space
of dimensionality greater than M (of course if the perturbation
were small, the system, if started on or near an unperturbed torus
M, would stay near M for a very long time).

Astronomers realized long ago that it is possible to devise a
formal perturbation theory for modified tori M starting from an
"unperturbed” torus MO‘ This theory is of practical usefulness in

celestial mechanics for calculating the orbits of heavenly bodies
over Long but §inite periods of time. In the case of a planetary
orbit, for example, the unperturbed system consists of the two-body
problem of that planet moving in the Sun's field. This is the eas-
ily integrable Kepler problem. The perturbations come from the
attractions of the other planets, principally Jdupiter. If we "switch
on" the mass MJ of Jupiter, and ignore the effect on Jupiter's

orbit of the planet (say the earth 8) being considered (i.e. regard
® as a "test body"), then we have the simplest case of the "plane
restricted three body problem", with MJ as the perturbation away

from integrability. We shall study this in more detail Tater.

But these methods only ensure the existence of tori M if the
perturbation series converge for infinite time, and we shall see
that the convergence is a very delicate matter indeed. Most physi-
cists, when they thought about the matter, have tended to feel, with
Fermi, that the slightest perturbation of an integrable system would
destroy the tori - i.e. the series for M would diverge. Confirma-
tion of this opinion would go a long way towards validating the er-
godic hypothesis and hence statistical mechanics. Landau, however,
thought that all systems are in principle integrable - 1.e. phase
space is filled with tori M. In fact, what happens is that "most"
tori persist under perturbation, albeit in distorted form. Some
are destroyed, however, and these form not a "set of measure zero"
but a finite set which grows with the perturbation. The destroyed
tori are distributed among those which are preserved, in a patho-
logical manner. These assertions were rigorously proved by Moser and
Arnol'd in 1962, on the basis of suggestions by Kolmogorov in 1954.
They form what has become known as the "KAM theorem" which is one
of the few certain statements in this subject. The proof is long,
intricate and subtle, but the ideas on which it is based are most
instructive and we shall concentrate on them,

Suppose that we have an integrable system. Then its phase
space can be coordinatized by action-angle variables I, © and the
Hamiltonian is a function Ho(l) of 1 only. WMe illustrate this with

another exampie to recall the theory: a particle in a two-dimen-
sional box with sides a, b (fig. 16).
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N
7’

a x

Fig. 16

The constants of motien are the x and y speeds val, lvyi which
are unaffected by collisions. The actions are

- =
I = 5 $ pdx = 5= x m lvxl x2a,

[Vxl = (n/ma)Il, jv,| = (m/mb)1, ,

2
I

2, (3.1)
b2>

!

and

LS

[pe]

o= 2 lIv, 2+ 1w 12) = (-
0 2 X ¥ 2m 3
The frequencies w are

o = %: (P /)15 wy = (F/mbA), . (3.2)

The coordinates are givenin terms of © by

).y (D) . 8 (3.3)



%

where 9, and 2 follow readily from a Fourier analysis of the motion,
which in this case is as shown in Fig. 17.

X A
°f laor b

, or wz
Dx/\
lex' or M|Vu| S
or v
0,
b

¥
-t

Fig. 17
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Perturb the system H0 with a nonintegrable perturbation
eH1(;)gp. For example, we could give the box a curved floor by
making H1 an extra force

In the new system,

I and © are perfectly good canenical coordinates but they are no
Tonger action-angie varjables because @ appears in H, so the I are
not constants of the motion.

1f tori exist in this system, there must be new action-angle
variables I', @' such that
H(1,@) = H'(1') , (3.6)

and the new variables must be related to the old by a canonical
transformation generated by a function S{g@,I'),

i.e.

fr—

1=vs)\ (U
.

VL:S

[lo]

el

e

Substitution in (3.6} for I gives
H(T,S5(8,1'), 0) = H'(L') (3.8)

as the condition $ must satisfy. Thus the question of the continu-
ing existence of tori reduces to the question of whether (3.8) can
be solved.

1t is natural to seek a solution S in powers of the perturba-
tion parameter e, and the "zeroth-order" term must be ©-1'. This
generates the identity (©' = ©; I' = I}. Thus we write

S=ol' +eS(eI') + ... . (3.9)
We must substitute this into (3.8), where H is given by (3.5):

Ho(L' + €Vg8y + ...) + (L' + ..., @) = H'(E') ,  (3.10)

of



36
or (to first order in e)
Ho(lf) + E(VI. Ho(Lf)'VQ§1 + H](Lf,g)) =H'(I') . (3.11)

Now we note that

UL Ho(lf) = go(lf) = frequency vector of (3.12)
unperturbed motions,
and
ime
l_g { (I)e R (3.13)
r"l a—

since HI is a function of p and g and these are periodic in 9, and
also 51 is periodic in & with an arbitrary constant term that we set
equal to zero. Hence,

im-@

I S, (I' . 3.14
Si(@1) = 3 Siy{1e (3.14)

Thus, we equate Fourier coefficients and obtain

(m=0) H'(1') = HU(L‘) + aH]O(I') + ... (the new H) (3.15)

(1)

(mg0) S, (1') = oo (3.186)

m=w,

g (L

The generator of the new tori is therefore
’ 3

(e.1') z——T—Hm@) e (3.17)

${,1') = @-I' + € ; + ... . (3.7
mF0 LU l_)

It Tooks as if we are in business - just continue this process
to infinite order in £, and we are left with S and hence the tori.
But this is hopelessly naivel! The fijes in the ointment are the
quantities W wy. If the frequencies Wy of motion on the unperturbed

torus are commensurable - f.e. if the orbits are closed and the
fundamental frequencies are in iesonance - then there are always
terms m for which (cf 2.40)

wym=0 . (3.18)
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For these m, the terms in (3.17) are infinite and the series di-
verges. Worse still, even for incommensurable O it is always
possible to find m's for which wy. m is as small as we Tike (fig.

18). For ever larger m's in the sums in the series (3.17), we must
pccasionally encounter even smaller m-wy terms. This makes us doubt

whether (3.17) ever converges. There are really two doubts: the
convergence of the sums % and of the series in powers of =. This

is the notorious "problem of small divisors" that plagued celestial
mechanics. It does not arise for systems with one degree of free-
dom.

w, (irrational)

M lattice

_Smalt
wy M

Fig., 18
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In astronomical practice the unperturbed motions of interest
often 1lie on tori that are not close to lTow-order commensurable ones
{although there are also astonishing commensurabilities as we shall
see later). - i.e. go-m_is only small for very large m (this means

that when considering the Earth's motion, say, we use the fact that
its frequency is 11.86 times that of its principal perturber, Jup-
iter). For these large m the Fourier coefficients Hlm of the per-

turbation are very small, so that if we cut off the sums before
these m's are reached, and work to only a few terms in e, the motion
can in practice be predicted for a Tong time. But the success of
these predictions in no way bears on the guestion of whether tori
exist, since this concerns motion over infinite times. (For the
molecular motions of interest in statistical mechanics, one second

corresponds to 10]3 collisions ("cycles”} which for a planetary
system would take 1000 times the age of the universe.)

Although perturbation series like (3.17) are familiar to most
physicists they are a very crude tool for studying the delicate
problems arising from the smali denominators. The central feature
of KAM's technique is the replacement of (3.17) by a series of suc-
cessive approximations to the suspected new torus that has a vastly
improved convergence. He shall not delve deeply inte these tech-
nicalities, but onlv i1lustrate them with the following example:
Finding the zero of a function

Sunnose we want the position x of the zero of a function f(x)

(fig. 13).
N /

Fig. 19
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We start with a guess: the zero is at Xg - the "unperturbed" value-

and proceed to refine the guess. First we use perturbation theory,
_analogous to (3.17). Write

= : e (X-Xo)n _
f(x) =0, i.e. f(x0 + (x-xo)) = n£0 fn = 0,(3.19)
where fn is the n-th derivative of f at Xg: Rearranging, we get
(x-xo)2 f, (x-x0)3 -fy
(X-XD) + 7 :F'-"'f' + .. = FoSE . (3.20)

1 6 ]

By standard "reversion of series" we can get the deviation x-x

from the zero in terms of the “perturbation” e: 0
- f, 2 f
- 2 2 3 2 3
X-XO =gteg (E'_F']") + e (Z(E) - E',F']—) + ..., (3.2

This is the analogue of (3.17) for the mechanical problem.
It is also a pretty silly way to find a zero. Much better
is Newton's method based on iteration (fig. 20).

.F
A /

Fig, 20
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Starting at Xg» We obtain the next approximation Xq from

f(x) = f(x0+x-x0) . f(x0)+(x1-x0)f'(x0) =0 ( )
i.e. 3.22
—f(xo)
€ = (x1~x0) =& % = ¢ of (3.20),
and the next as
) _flxg)
e = o) = vy
. (3.23)
€ E x =-X = i(_?ﬂiL
n n “n-l f Xa-1)
etc.
How quickly does this converge? We can estimate €ptl in terms of
En by
Sf(x ) -TF(x_q)ee Fx )+ x el x4}
e = n-1 _n n-1 : 2 n n-1
ntl  f (xﬁ) f (xn_1)+enf (xn,])
( ) (3.24)
(x
-~ 12 n-1 2
~ =5t [ T ] = O(E )
enrFix 4 n
n-1
€1 = € € T 0(82),53 = 0(54),54 = 0(38),... e = 0(82 ),
(3.25)

so that instead of (3.21) we have
xexg = e, =€t 0(e2) + o(eh) + 0(e?) + 0(e'®) + ... (3.26)
1

whose aston{shing convergence beats almost any pathology of the
approximated function f.
It is amusing to show this by numerical example. Let

f(x) = tanx-1, $0 X = %- .785398164 . (3.27)
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We take Xq = 1. Then the two methods give

i

1 i . !

Perturbation Newton

' X X =X an+1 % DX =X n2
L ne ~7n e
0 1 - .214602 .214602’ 1 f .214602  .214602
1i .8372778685 .051880 . .0461 j .837277868 ° .051880 ' .0461
2i .796040059; 010642 .0099 i .788180293? .002782f .0021
3@ .787025592 | .001627; .0021 i .785405918; .000008; .000004
wi .785398164‘ 0 5 0 ! .785398164 ! 0 ; 0

! ! i

The reason for this astonishing "quadratic convergence" is that at
each stage T js evaluated at the current approximation Xn rather

than at the zero-order approximation Xg s in the perturbation series

(3.21).

Precisely the same device is employed by KAM in the mechanical
problem. Each new torus generated by the previocus approximation is
itself made the basis of the next approximation, rather than (as
in 3.17) expressing all approximations in terms of the unperturbed
torus (1,0) with Hamittonian HO{L). The accelerated convergence

thus obtained was subjected to a searching analysis by KAM.

Their central result is that the process of generating "per-
turbed" tori does in fact converge, for small but finite ¢, almost
always. Therefore, most trajections continue for alf time on the
tori M of dimensionality N, and do not explore the whole 2N-1 di-
mensional energy surface. How then can ergodicity come about?
What of statistical mechanics? The answer lies in the qualifica-
tions "almost always" and "most". For it turns out that unperturbed
tori in the neighborhoaod of those on which orbits are closed {or
partially closed) are almost all destroyed. These orbits lie on
tori with commensurable frequencies, 1.e. those for which

wy'm = 0 for some m, or wy = Moy . (3.28)

These "destroyed" tori are those giving rise to the small denomi-
mators in (3.17). But we have already seen that for any Wy there

are, infinitely close by, "rational® tori satisfying (3.28). So,
are we any better off? Surely after destroying all rational tori
(3.28) and those near them, there are none left at all? Not so.

To understand this, and KAM's specification of the "width" of the
destroyed regions, we must learn a little of the mathematics of
rational and irrational numbers. Then we shall give some striking
astronomical iliustrations of the KAM theorem, and describe numeri-
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cal experiments that show what happens in the "gaps" where tori
have been destroyed. Finally we attempt to explain how stochas-
tic features enter into the motion in these gaps, which therefore
provide the gateway to statistical mechmaics, growing with € and
eventuaily filling the whole phase space.

4. THE ARITHMETIC OF TORUS DESTRUCTION14

Consider (3.28) for two degrees of freedom {the simplest non-
trivial case). The second of the equations gives the frequency
ratio o of the tori bearing closed orbits as

Slzg= s E- (r and s are integers) . (4.1)

Thus ¢ is a rational number (r,s is simply a more convenient no-
tation for N1,N2). A torus with incommensurabie frequencies has

jrrational o and cannot be written in the form (4.1)}. But it can
be approximated arbitrarnily closefy by rationmal o's. Take o=m,
for instance. Then a series of approximations can be generated
by successive truncations of the decimal expansion:

=1 = x 23 03 34 3142 31416

g=m = 3-141592654 — r‘/S -t s -IO s -’00 5 1000 » 10000 9 revsn

(4.2)

The better approximations have larger values of r and s. In fact
for these decimal expansions

1

3 (4.3)

-
lo - 5l <

Actually it is possible to do better; to approximate irrational
tori much more closely by rationals. The point is that decimals,
while useful for computation, are very "impure" representations
of numbers o, in that the arithmetic nature of o is contaminated.
with the special properties of the base 10, and the same holds for
any other base. The best representation for arithmetic purposes
is the continued §raction for o, written as

g=a + 1 (a, integer (-=...1,0,+1...)
3y + 1 a1,a2...natura1 numbers '
(1,2,3,...)
a, + 1
2
33 + L] . -

This is unique, and can be derived by subtracting the integral part
2y of o, reciprocating, subtracting the integral part ay of the number
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thus obtained, reciprocating, ....... By cennns etc. For m we ob-
tain
T=3+1
7+1 (4.6)
15 + 1
293 + ...

The successive approximants of the continued fraction, namely,

_n
n
%n

a’
m

+ 1 s (4.7)

define a sequence rn/sn of rational approximations to . It can

be shown that these are best approximations in the sense that no
rational r/s with s <s, is closer to o than rn/sn. Simple algebra

based on (4.7) shows that the sequence always converges to o, and
that the successive rn/sn are alternately greater and less than

o (fig. 21).
Moreover,

’d - §ﬂ1 <ge— > (4.8)

r /s,
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which is much better than (4.3). To illustrate this, we get for =

o

r r
=q 1 _22, 2 . 333 _
EE =3, 5 =5 3.1429 ... 5, 106 - 3.14151
{2 places) (3 places) (4.9)

r
3 = 3% 31415929
Sq 113

{6 places)

The last result was known to Lao-Tze {604-531BC).
Two digressions: (1) obviously the continued fraction for o
converges faster if the sequence a4 3, ... diverges faster, and

vice versa. Thus, the sequence for m, which soon contains the Targe
integer ay = 293, converges very fast indeed (see 4.9) and the

slowest convergence, corresponding to the irrational o worst ap-
proximated by rationals, is given by the number

o=1 =0 .618033989 .... = 25,71 = golden mean
14 (4.10)

(2) Much of the theory of continued fractions was developed in the
17th and 18th centuries in connection with orrery technology. An
orrery is a mechanical model of the solar system: turn a handle
and a system of gearwheels moves the planets around at the correct
proportionate speeds. The problem was that the frequency ratios
are not all rational (or, to experimental accuracy, very high-order
rational), so that a theoretically perfect gearing would involve
inordinate numbers of teeth (tooth ratio m]/mz for two planets with

frequencies Wy and mz). The approximants of the continued fraction
for w]/wz give a "best" sequence of gear rations.

Fquation (4.8), then, tells us that for any o whatever it is
possible to find rationals r/s differing from o by less than a

quantity of orders s2. For panticular classes of o, sharper bounds

exist {i.e. |o ~ r/s| < 0(1/53) or (o - v/s) < 0(e 5}, etc.), but
(4.8) is the best that can be achieved for aff o.

Now, KAM prove convergence of the accelerated iteration-per-
turbation scheme for the torus generator S for all inmitial tori
whose frequency ratio is sufficiently irrational for the following
relation to hold (in the two-dimensional case):
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w
o, 5%5% , for all integers r and s , (4.11)
[.l)02 s g~

where K is a number, independent of r and s, that tends to zero with
the perturbation . The tori excluded by (4.11), which are mostly
destroyed, are those satisfying :

01 _r

<8e) eor some roand s . (4.12)
gz S

S2.5

This is a more restrictive condition than (4.8) (which applies for
all o = wO]/uOZ) and we can expect therefore that after these tori

are destroyed there will still be some left.

We can quite easily show that this is in fact the case. With-
out loss of generality, we can consider all initial tori whose fre-
quency ratios lie in a range of size unity, and moreover take this
to be the range 0 5-w10/m20 < 1. We delete from this line ail seg-

ments satisfying (4.12):
) w
0 _1/5 _1/4 VW3 2/5 1/2_3/5 _2/3 _3/4 &5 1+ —.

55.9 32 15.6 55.9 5.7 b5b.% 15.6 32 55.9

Thus we delete K/sz'5 about each rational r/s on the range 0 to 1.
The total Tength deleted is thus

| Aes=Kk | ==K (4.13)
(s is the number of r-values with r/s on 0 to 1)

which tends to zero with K and hence with €. This is actually an
over-gstimate of the "measure" of the destroyed tori, because we
have included separately rationals r/s whose deleted neighborhoods
overlap. The destroyed tori would still have finite measure if

{2.11} were less sharp. More precisely, K/52'5 could be replaced

by K/s" where u>2. Analogous results were proved by KAM for all
degrees of freedom N. The precise value of K is not determined
by KAM, nor is it proved what happens to motion in the gaps.

We repeat the main result: in a perturbed system, most orbits
lie on tori in phase space. Those that do not, form a small but
finite set pathologically distributed in phase space near each un-
perturbed torus that supported closed or partially closed orbits.
From a physical point of view the motion in high-order "gaps”
(1arge s) is hard to study, because these gaps are very narrow
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(0(5_2'5)), and random funthen perturbations (which must always be
present in view of the fact that no real system can be isolated)

will probably push the system out of the gap and onto a nearby torus.
But the Tow-order gaps, resulting from jow-order resonances among
the unperturbed fregquencies, are relatively wide and give rise to
observable and computable effects as we shall now see.

5. ASTRONOMY OF THE GAPS BETWEEN TORI''=1>-1®

Let us apply the KAM theory to the simplest case of the "plane,
circular, restricted three-body problem". Consider three bodies
moving under their mutual gravitation: the "attractor" A with mass
M, the "perturber" P with mass m and the "test body" T with mass
u {fig. 22).

Fig. 22
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The “restricted" problem has u << m and p << M, so that the effect
of T on the motion of A and P can be neglected. The two-body motion
of A and P is easily solved, and we have to find the motion of T
in the known field of A and P. We consider only the case of where
A, T, P move in a fixed pfane, and we let P move about its center
of mass with A in a circle rather than the more general ellipse.
Finally we consider P to be a perturbation on T, i.e. m << M, 50
that T's motion is dominated by A. When m=0, T moves in a Kepler
ellipse about A. What happens to T when we switch on P? This is
the simplest nonintegrable problem in celestial mechanics, and
Poincaré realized it to be of crucial importance for theoretical
dynamics.

The Hamiltonian for T is

2

P
H(Q,:P_st) = J—Z—ll,l_ = _G%g = _Gﬂll_____ ' (5.1)

E&-rp(t)l

The coordinate g (measured from the center of mass of A and P} has
two components because T moves in a plane. r {t) is the known

moving position of the perturbator P (also measured from the center
of mass), and r is the vector from A to T. It is very awkward to
work with this time dependent Hamiltonian, and we can make the
system conservative by viewing T's motion from a frame rotating with
the angular velocity, &, of Py in this frame P is at rest (fig. 23).
The new Hamiltonian can be shown by elementary methods to be

2

2
H(g.p) = - prlaxg) - Sy _ Gmy ‘ (5.2)

r " ler]

The last term is the non-integrable perturbation H1, with P's mass
m playing the role of the small parameter e.

N7
O
-

Fig. 23
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in polar coordinates r, ¢, pr,p¢, the unperturbed Hamil-
tonian is

2
P
2 9
Pr * r2 GM ‘
Ho(g,g) = 5 - 9P¢ - —FE . (5.3)

(We have used the fact that q+r as m»0.) HNeither t nor ¢ appears
in this, so the two constants of motion are p¢ and H0 itself.

Specifying both of these defines a torus M. The actions I, and Ir

¢
of M expressed in terms of p¢ and H0 are as follows
1 2m g

R w \/ 12

- - e My _ o
I,=5-¢ pdr ﬂ(f] dr 2m(H0+IQ¢+ ) . (5.4}

oMy 2

= .1, + (5.6)

V2 (Hgal qb)'

The Hamiitonian H0 in action variables for this rotating frame is
therefore

3,22
Hy (1) = - L& 7 - o, - (5.7)
2(Ir+1¢)
The unperturbed frequencies VI H0 are
3.2,2 3.2,2
= q+MEM S HGM (5.8)
m0¢ Q (11 )3 Wy (1+1 )3 . .
r r
This is easily interpreted, since
3.2,,2
E_E_M_._.E (5.9)
i ¥
(1,41,)

is the unperturbed frequency of T's Kepler motion in the non-ro-
tating frame, in which both r and ¢ motions have the same frequency
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because of the well-known degeneracy of motion in the inverse-
square Taw force in which all orbits are closed. Therefore (5.8)
can be written in the obvious form

Gop = -+ Wps W = W {5.10)
and the frequency ratio is
), .
oo 8 (5.11)
Or 1

The KAM theorem can be applied to Hamiltonian (5.2) with m as
perturbation. It shows that the motion of T continues to Tie on an
invariant torus in almost all cases if m << M. But are destroyed
tori near motions of T with rational m0¢/w0r or, from (5.11), with

rational Q/mT, corresponding to xesonance between the periods of

Pand T. In the solar system there are two near-continuous distri-

butions of test bodies T where the gaps between tori are observed.
The first case is the asteroid belt between Mars and Jupiter.

The attractor is the Sun, the perturber is Jupiter and the test

mass is any asteroid. According to (5.11) and KAM, we should expect

gaps in the asteroid belt at distances from the Sun where T's un-

perturbed frequency w is commensurable with Jupiter's freguency

Wy These gaps were indeed observed by Kirkwood in 1866. Modern

data show them very clearly (fig. 24).

fraction
of } asteroids

& 72 3 51 2h 3 Y
TTw/wy

Fig. 24
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The early stages of orbit instability beginning as unperturbed
circies near the resonance w/wJ = 2 are shown clearly in computa-

tions by Franklin in 1973: the orbit turns into an ellipse whose
semimajor axis a oscillates in length (fig. 25).

w‘.l‘/w ) a/a:}'

—524 —-65

X X
SN\ 4
N W)
';:",'\\‘\"\ AP I

X 5./ fr
N2 2]

1) ¥ ¥
N ;
Jo Y e
it L NP
SN R
N

120

Fig. 25

The oscillations near resonance look as though they are diverging,
but 1500 years is far too short a time to show anything conclusive.
The only apparent violation of KAM's prediction of gaps is

the lowest resonance of all: 1:1. But this is not a violation

at all, because these asteroids - the Trojan group, about 15 of them
(the first discovered in 1906) - do not cover & torus in phase space
but are clustered at two points on Jupiter's orbit, forming equi-
lateral triangles with Jupiter and the Sun (fig. 26). The possib-
ility of such a triangle was first appreciated in 1772 by Lagrange
as (he thought) a mathematical curiosity in the 3 body problem:

any 3 masses can move stably in a rigid equilateral triangle with
angular velocity (fig. 27)

Q= ,}J%{M +m o+ ) = Wy (in our case) , {5.12)
r

where r)is now the side length (9 refers to rotation about the center
of mass).




Fig. 26

Fig. 27

forceson T :

centrifugal,
from CM
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These "Lagrangian points™ on dJupiter's orbit correspond not ta a
torus'-worth of orbits but to two .{sofated closed orbits.

The second set of solar-system gaps occurs in the aings of
Satuwwn (fig. 28). In this system, Saturn is the attractor, the per-
turber is any of the inner satellites, principally Mimas, and the
test masses are ring particles (Maxwell showed that a rigid ring,
or a liquid ring with viscous stresses, would be unstable, so the
particles are essentially independent, moving in circular orbits and
not colliding.)

Fig. 28

~ Why should there be rings at all? Roche showed that any large
body so close to Saturn would be disrupted by Saturn's gravity {or
not form in the first place}. Disruption occurs (fig. 29) if the
attraction between two elements of the body is less than the tidal
force from Saturn. Take the elements to be spheres in contact
(radius a). The tidal force is the difference between Saturn's force
on the two elements. Hence, disruption occurs if

2
o< 2 (2a) orl%zﬁ > . (5.13)

(23)2 r mr

If the densities of Saturn and the hypothetical satellite are as-
sumed equal, this gives (ma a3', Ma R3)

r<16/3 ¢

2.52R, (5.14)
152,300 km .
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Janus, the tiny innermost satellite of Saturn (discovered in 1967)
just makes it; its distance is r = 156,800 km!

:
a8m

r

Saturn (M

Fig. 29

The ring system Ties wholly within the Roche 1imit, and has
the structure shown in Figure 30.

The "3w mimas" resonance is very close to the gap between ring

L] i n n n > :
B and the crepe ring, but meimas and 3wence1adus lie just
jnside the "Gassini division" between the main A and B rings. How-
ever, Frankin has shown (1973) that the effect of the mass in ring
B moves both these resonances right into the gap {roughly, it is as
if Saturn were a bit heavier). :

A present-day theoretical physicist might naturally think of
making a computer model of the rings. This leads to difficulties,
however, well expressed by Franklin:

"I began with the naive hope that all one had to do was to take
a planet, put a large number of massless ring particles around it,
introduce the inner satellites.... turn on a machine and after a
while discover that the satellite perturbations, particularly ones
near resonance, had sculptured the ring. I was set to lease the
movie rights....to watch a nice uniform ring quickly being sculp-
tured into Saturn's ring. Well, the movie has yet to be made...

The problem is simply that things happen on an enormously slow time
scale, not slow cosmologically, but very slow when it comes to the
allowances made by administrators of computing facilities”.

I want to digress a bit now, to discuss something that confused
me while I was checking these Saturnian ring gaps. If one considers
Tethys, the next sateliite beyond Enceladus, one cbtains almost
precisely the same ring gaps as those from Mimas. The reason is
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(\O3km) 185-7 L Mimas
56-8 | Janus
152:3 1 Roche \imit
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ring A
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¢ Centre

Fig. 30
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that, to one part in 103, Wnimas " zmTethys' This seems precisely

to contradict the KAM theorem, which as we have seen eliminates tori
made up of closed orbits. In reality however, such commensurabili-
ties do not contradict the theorem, for at least two reasonms.
Firstly, the Mimas-Tethys system is {nteractive rather than pertur-
bative - each body affects the other - whereas in the Mimas-ring
system and the Tethys-ring system the ring particles are passive test
masses, responding to the satellites' field but not affecting it.
Secondly, the KAM theorem does not show that closed orbits are de-
stroyed, but only that the tori composed of them are destroyed -
isolated closed orbits can and do exist (cf. the Trojan asteroids).

Nevertheless, it does seem surprising that of all possible
orbits, most of which are unclosed and lie on undestroyed tori,
Mimas and Tethys should choose a closed orbit. One's surprise is
jncreased by the recent discovery that commensurability is apparently
the rule rather than the exception in the solar system! Careful
analysis by Roy and Ovenden in the 1950's and Molchanov in 1966
is claimed to show that this cannot be due to chance. It seems that
a complete set of commensurabilities w-M=0 exists for each of the
following four systems: Saturns' satellites, Jupiter's satellites,
Uranus's satellites, and the planets themselves.

Let us examine this for the nine planets: I{Mercury)-IX{Pluto).
Then, to a close approximation

Mrnwn =0 fr=1to8 n=1t09),
where
(1 -1 -2 -1 0 g 0
0o 1 0 -3 -1 0 ¢
o o 1 -2 1 1 T 0 0
o 0 0 1 -6 0 -2 0 O
M= j
rn 0o 0 0 0 2 -5 0 0 0 (5- 5)
0 o 0 0 1 0 -7 0 0
o 0 O 0 ¢ 1 -2 0]
\ ¢ 0 0 0 0 0 1 0 -3

The error is measured by Amn/mn, where wn is the planet's measured
frequency and Amn the deviation when (5.15) is used to calculate

the frequency, taking (say) Jupiter's frequency (mv) as the standard.
Then:
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Planet n Amn/mn
I .0004 It all seems pretty accurate - the com-
I1 .0015 mensurability integers in (5.15) are
111 .0031 all small (< 7) and so are the errors.
IV .0031 Perhaps the whole solar system is in
v 0 resonance! From a historical viewpoint,
VI .0068 this discovery discredits the Bode-Tit-
VII -.0118 jus law, namely:
VIII .0075 _ distance of planet from Sun is
IX -.0025

a3x2" ¢4, (n=-1,2,...) (5.16)

and supports Pythagoras' theory of planetary harmony, namely volume
of "crystal sphere"

a(distance)3 a(per‘iod)2 with o an integer . {5.17)

Suppose this is correct. Then we must ask why is the solar
system in a state which seems to have zero a priori probability
{closed orbit for the whole motion)? The beautiful theory has been

- elaborated by Molchanov and Goldreich that the nor-Hamiftonian ed-
fects of viscous dissipation and tidal friction would slowly pull
into nesonance a system started out with random multiply periodic
initial conditions {i.e. on some surviving incommensurable KAM tor-
us). The "short" term motion is accurately Hamiltonian, but over
cosmological times the system would drift across tori (the "con-
stants" I would vary) and into a periodic state as a result of the
dissipation. Most of the dissipation is thought to have occured
in the early stages of the solar system's evolution as a result
of friction from the then relatively dense interplanetary gas.

This has now largely condensed, so that the system is almost en-
tirely Hamiltonian but with a motion that was selected by non-Hamil-
tonian processes. (Dissipation violates Liouville's theorem, so
that an ensemble of plane solar systems distributed uniformly over
an energy surface in the 9x2x2 = 36 dimensional phase space can
eventua}]y all become concentrated on the small set of periodic
orbits

But all of this is controversial. It may be that as an indi-
cation of resonance the equations (5.15) are deceptive. For one
thing, only nine frequencies w; are involved, even though mutual

perturbations break the Kepler degeneracy and lead to two frequencies
per planet instead of one. More seriously, a little arithmetic shows
that (5.15) implies that all w, are integer multiples of a basic

frequency

- ¥V _ ZJupiter (5.18)

so that the resonant period of the solar system is 210Tdupiter -~
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2500 years. After this time the planets should have returned to
their original configuration. But the errors Aw/w will spoil this
prediction, to the extent that the Earth (say) will be about 7 revo-
Jutions out of phase after one of these so-called resonant periods.
In other words, the commensurability that seemed so ciose is in
reality so poor that the resonance loses phase coherence before

one "revolution"! Another criticism of the "goodness of resonance
is based on the claim that almost any nine randomly-chosen frequen-
cies can be made to satisfy a lTow-order resonance equation Tike
{5.5) to comparable accuracy, but this claim is controversial.

6. SURFACES OF SECTION AND AREA PRESERVING T"hﬂd:’PII\IGSZ’]0’]3

Now we describe an important technique, originally suggested
by Poincaré, for studying the breakdown of integrability and the
motion in gaps between destroyed tori. The method best suits two
dimensional problems and we consider only three dimensions here.
Then the phase space q,p is four-dimensional and the energy "surface"
£ (i.e. the "surface™ H=E) is three-dimensional. (It is a mistake
to think of this as being like ordinary three-dimensional position
space, because it is non-Euclidean, closed, and may be multiply-
connected {cf., two-dimensional surfaces in three-dimensional space).)
The x surface of section Sx is the intersection of E with

y=0; and has (px,x) as coordinates. Then specifying the position
of a system on SX completely specifies its state, apart from a sign,
because p,,X and y (=0} are specified, and for the usual Hamilton-
ians quadratic in P, the value of py is determined by the condition
H{x,y=0, px,py)=E up to a sign. We define this sign to be posi-

tive. (The y surface of section S is defined in a precisely anal-
0gous manner). Y
A system started out on Sy will subsequently cross it repeat-

edly, because in a bound system y will repeatedly oscillate through
zero and half these zeros will have positive p . Thus an initial

point XO = (xopxo) on Sx will subsequently cross S, at X1E(x1PXI),
Xz,Xa... (fig. 31).

Fig. 31
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At each new crossing the whole plane Sx is mapped onto itself, be-
cause every point XO maps onto some new point X1. {The time taken

for each iteration is different for each point X, but this is ir-
re;evant for our purposes.) Call the mapping T: X, = T(XO) {fig.
32).

An important property of the mapping of Sx is that it is area-
presenving:

s T VY (6.1)
%ol %00l

X | P’-
‘? cx
T

e

X X

Fig. 32

This follows from the Hamiltonian character of the dynamics between
"collisions” with S : during the motion, q and p remain canonical.
Therefore, the system's state (gq,gq) at time t, can be obtained
from its state (gOEO) at t0 by a canonical transformation - the

motion itself can be thought of as the unfolding of a (time-depen-
dent) canonical transformation with generator S:

t ty
(9gRg) * S(agsRy » tor 1) > (g s Byhs
By = Vﬂos s {6.2)
9 = VE]S.

In particular,
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= etm— — ——-.l = e
] X-l - 3 (6-3)

from which (6.1) follows immediately.
The usefulness of these surfaces of section Ties in the fact
that the iterates X1,X2... of an initial point XO reveal whether

or not the motion is .integrabfe. If it is the system does not ex-
plore all of E but only a 2-torus #. This torus intersects S, in

a smooth closed curve C (fig. 33). A1l iterates Xj must lie on C,

and after sufficiently many iterations the form of C usuaily becomes
apparent.

Px
Ly

A \;

A
5 2

Fig. 33

If the motion is periodic - i.e. the orbit is closed - then some
jterate Xn will coincide with XO {n depends on the order of com-

mensurability of the frequencies W and mz). Thus XO is a fixed

podint of the mapping ™. In integrable cases there is a torus-full
of these closed orbits, so that the whole curve C is made up of
these fixed points. Most curves C are, however, sections of ir-
rational tori, and are generated by all the iterates of any point
XO. The curves C are fnvariant curwves of the mapping, because T

maps them onto themselves:
T{C) = ¢ (6.4)

For non-integrable motion, tori do not exist, so that the system
expiores a three-dimensional region of E. Therefore its crossings
of S, cover not a curve but a two-dimensional region o Sx_(Fig.

34).
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Then,
(Q,-Q,)
H = %{p% + pg + pg) + e 13 (6.5)
-{(Q,-Q;}  -~(0,-Q,)
+e C "y e 372 3,

This is really a two-dimensional- problem, since p]+p2+p3 is a con-

stant of the motion, that reflects our freedom to add an extra rigid
translation to any motion. It is possible to make a {non-intuitive)
change of variables (canonical transformation) to make the problem
mathematically identical to & particle moving in 2 two-dimensional

potential:
2 2
po+p 2y + 2J§x 2y-2¢§% ~dy
H(g,p) = "—2-—1 + 2]—4 [e +e +w - %.(6.6)

The equations of motion of trajectories for fixed E were studied
by Ford and his collaborators, who presented their results as "x=0"
surfaces of section S_. The perturbation parameter can be thought

of as E itself in this case, since for smali E the particle can
explore only the xy region near the origin, where H is an integrable
system - the isotropic harmonic oscillator:

g0 P§+P§+X2+.¥2
H(g.p) = 5 . (6.7)

Figure 36 shows the equipotential contours.

For the oscillator, the Hamiltonian is integrable. It was
thought that as E increased, and more and more of the nonquadratic
regions of the well become accessible, more and more "rational™
tori would be observed to break up - on the surface of section the
"orbits" XO’XI"’ of initial points XO would no longer be on smooth

curves C. But this behavior was not found. Instead the iterates
stayed firmly on smooth curves for E=1, E=256 (fig. 37), and all
E up to the computer's limit of 56000!

It looks as though the system is behaving like an integrable
system! The above pictures do not show the individual intersections
of the curves C by the orbit XO..., but the curves themselves.

These curves are identical with computer-calculated "analytic® curves
obtained by a perturbation theory.analogous to that employed in
Chapter 2. Analogous, but not the same, because the “unperturbed”
Hamiltonian in this case is an equal-frequency oscillator, for which
atl orbits are closed. But a special perturbation theory can be
devised to deal with this single massive degeneracy {it is enor-
mously elaborate) and there is a corresponding variant of the XAM
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Fig. 34

This will become more and more apparent as the number of jterations
increases.

With computers, many iterations of T can be carried out for
a range of starting-points XU on Sx' Such experiments can never

yield proofs of the existence or nonexistence of invariant curves
C, because it is always conceivable that high order iterates Xn

might diverge from a curve suggested by early iterates, or that
jterates apparently randomly filling a part of Sx might really all

1ie on some definite but complicated curve C. However, when inter-
preted in the Tight of the KAM theorem and some further analysis
that we shall discuss later, the experiments are extremely instruc-
tive.

The first example, that led to a surprise, is the thaee-panticle
Toda Lattice. This is perhaps the simplest non trivial “"solid".
Three particles move on a "ring with exponential forces” (fig. 35).

Fig. 35
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Fig. 37

theory: "most® perturbed orbits will still 1ie on tori. The pertur-
bation theory gives a series for an extra constant of the motion
F(p.q). additional to H. It was calculated through eighth-order
terms in the p's and q's. These trajectory computations suggest
that the series converges - i.e. that F exists.

And indeed it does; Hénon found the following analytic form

for it:
2y-2/§x
F(n,) = 8o, (6% - 395) + (p, + VBp,) e

2y+2./3x -ay

+ (p, - 73p,) e - 2p, e (6.8)

x 3

B30 12(yp,-xp, )

Therefore this constant "evolves® out of the angular momentum which
is conserved for small E. The invariant curves could have

been computed much more easily simply by using (6.6) and (6.8) with
x=0, eliminating Py in terms of E and finding py(y) in terms of E

and F,

Now comes the surprise. Instead of Toda's Hamiltonian (6.6),
look at the Hénon-Heiles poiential, which is its truncation after
third-order terms:
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p§+P§+x2+y2 5 3
H(g.p) = 5 #xy - & (6.9)

This is the system whose potential contours were sketched on fig.
1. It has been employed as a simulation of a three-atom solid, a
vibrating triatomic molecule - which is really the same thing -
and the "Hartree" averaged field seen by a star moving in the gal-
axy.

This system differs from Toda's in that it has a "dissociation
energy"” E=1/6, above which the energy surface is unbounded. There-
fore we can "perturb” the oscillator {E=0) only with energies from
0 to 1/6. Bearing in mind, however, the integrability discovered
for the Toda Jattice for vast E's and the identity of the Hamilton-
ian's through cubic order, we do not expect very different behavior
in the Hénon-Heiles case.

But we do get different behavior. On fig. 38, the left hand
column shows the eighth-order-perturbation-theory-generated surfaces
of section for various energies computed by Gustavson. Orbits would
seem to 1ie on smooth invariant curves as a result of the new con-
stant of the motion given by the perturbation theory. The right-
hand column shows the "exact" trajectories through the surfaces of
section. For E=1/24 and E=1/12 the mapping plane is covered with
invariant curves identical with those given by perturbation theory.

Above E = 1/9, however, Hénon and Heiles found that there are
some orbits that do not seem to 1ie on invariant curves - the tori
have been destroyed! The difference in behavior is dramatic: alf
the random looking dots on each of the E=1/8 and E=1/6 pictures were
generated by one trajectory as it crossed Sy while wandering ergod-

jcally through E. At the same time, some tori persist, even up to
(and actually above) the dissociation energy.

The kind of behavior is what the KAM theorem led us to expect,
To begin to understand the destruction of teri in more detail, how-
ever, we must Tearn a bit more about mappings.




Fig. 38
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7. TWIST MAPPINGS, FIXED POINTS, IRREGULARITY*

The tori of integrable systems intersect the surface of section
Sx in concentric curves which in the simplest case are closed. It
is natural to employ action-angle variables Ix’e on Sx’ (fig. 39}.
Then p = v@Ix_and ® are polar coordinates on Sx' This is consis-

tent, since the area of the Sx section of the torus Ix is (cf. 2.13).

2
pdg=¢pd =mp
¢ AN (7.1)

21r1x

X
Fig. 39

The 1nvar{ant curves are now circles on Sx (fig. 40).

The mapping of any trajectory conserves p (i.e. Ix) but changes
6. Ifts=s Zn/my is the interval between crossings of Sx’ then the
angle & at which a trajectory next intersects Sx if its initial
angle was 90 is

w
- = X
0y = O +ut =6 ¥ 2m = (7.2)
h
Now

2 = a(p) (7.3)

e

* For reference, see Sec. 20 and App. 27 of Ref. 2, Secs. II.4 and
111.6 of Ref. 17, Sec. 5 of Ref. 10.
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Fig. 40

is the frequency ratio on the torus considered. We have written o
as a function of p only, because we are working at fixed E, so that
specifying p (i.e. Ix) also determines the other action I . Thus,

we have reduced an integrable system to the following "twist map-

ping" T
p'l = fJO p'| T p)
0, = § + 2malpy) (91) o/ (7.4)

a(p) is known as the "rotation number". We assume it to be a smooth
function of p. Circles map to circles, radii to curved arcs through
the origin 0 (fig. 41},

Fig. 41




68

Obviously T is area-preserving.

So far we have just restated known facts about integrable sys-
tems, but in a new language. Likewise, the KAM theorem can be re-
stated: Perturb T into a new mapping Ta’ defined as

Py =Pyt ef(poseo) (p]) . (D)
B.I 90 + 2na(p0) + eg(po,eo) e Ele

(7.5)

where T and g have period 21 in 60, are so related as to preserve
area, and have f=g=0 at p0=0 5o that 0 remains a fixed point. Then
most points in Sx Tie on smooth invariant curves {sections of tori)

of T, that are distortions of the invariant circles of T. The only
possible exceptions are near “commensurable" tori on which a(po)

was rational. This is more restricted than our earlier statement
of the KAM theorem (it applies only to 2 dimensions) and also
more general in that T and TE can be any area-preserving mappings

that need not originate in a Hamiltonian, and o, f and g need not
be analytic but only smooth in the first 333 derivatives (this
number has been reduced since the first proof by Moser).

The-advantage of stating the problem in the geometric language
of mappings is that it enables us to understand a little more about
what happens in the "gaps" where commensurable tori (closed orbits)
existed. Consider a "rational" unperturbed circle C,

a(pg) = E— {r, s integers). (7.6)

Eveny point on € is a fixed point of Ts, since

< (P0) . [P0 _{"o _ ([P0
T % 60 + 275 a(po) 9 * 2ar 9 o {7.7)

KAM tells us nothing about what happens to this circle of fixed
points under TS. We might expect them all to be destroyed. This

is not the case; in general, an even multiple of s, i.e. 2ks (k=1,

2,3 ...), fixed points remain under perturbation. This is the

Poincané-Binkhofq fixed point theonrem, which we now prove.
Consider two circles C+ and C_ between which 1ies the circle

C on which a=r/s. OnC,, a > r/s, and on C_, a < r/s. Therefore,
T° maps C, anti-clockwise, C_ clockwise, and C not at all (fig.
42).
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- Fig. 42

Under the perturbed mapping Tz these relative twists are preserved
if € is small enough. Thus, on any radius from 0 there must be

one point whose angular coordinate is unchanged by TZ. These
"radially mapped" points make up a curve RE, close to C. Any of the
sought-for fixed points of TZ must 1ie on RE. Applying TZ to Ra
generates another curve TZ RE (fig. 43). This image curve must
intensect Re, because it must have the same area as RE and also
enclose 0. Ignoring degenerate

Fig. 43
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cases of measure zero in which RE touches TZRS, we find that there
must be an even number of these intersections.

Each intersection X is a fixed point of TZ. However the orbit
of X under Te consists of points

2

Sy_ s+l _
X, T X TX... TX=X, To X=T X, ... (7.8)

so that afl the points on this orbit are fixed points of T.. The

orbit has s distinct points on it, so that the number of intersec-
tions must be an even multiple of s: There are 2ks fixed points

04 Tt .

Therefore,some fixed points are preserved under perturbation.
It is obvious from the method of proof that in general not all will
be preserved - all but a finite number will be destroyed, so that
formal techniques for calculating perturbed invariant curves {tori)
must diverge. This can be rigorously proved for polynomial mappings,
where TX is a polynomial function of the coordinates Xg and Yo of

X. Then the fixed point equation for Ts, namely

5% = X, (7.9)

consists of two polynomial equations in x and y, which by a theorem
of Bézout have only a finite number of roots (fixed points).

The fixed points we have found are of two basic types, and
we now examine these. The type of a fixed point is defined by the
form of the nearby invariant curves. To expmine these it is suf-
ficient to Linearize the mapping equations near the fixed point.
Without loss of generality we can take the fixed point as the origin
0 of the mapping plane {q.p). Then the linearized mapping T must
take the form

9\ _[T11% * TizPo\ _ m (o

P/ \T219% * Te2Po Pg

(7.10)

The nature of 0 is determined by the eigenvalues Ay, iz of the
matrix T, which are given by

T2 Ty

det =0. (7.11)
Tor  Top2

Because the mapping is area preserving, det T is unity and
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-1
A=A (7.12)

Thus the eigenvalues are either #eal numbens, A and k"I, or compfex

conjugates on the unit circle {because T is a real mapping); we ex-
amine these cases separately.
If A] and AZ are compfex, we can write

i -
A1 e A2 =@ . (7.13)

and T can always be reduced, by a linear change of coordinates, to

the form
Ay 9 cos =Py sin o (7.14)
Pr/  \dg Sin a+py cos of '
This is just a simple rotation by constant angle «, an obvious spe-
cial case of the twist mapping (7.4); the invariant curves are circ-
les. In the general case where the A's are complex, the invariant

curves are ellipses (fig. 44), and the fixed point 0 is said to
be of ellipiic fupe.

Fig. 44

Elliptic fixed points are stable, because any point ("orbit") near
to 0 will remain near 0 after arbitrarily many iterations of T.

If the eigenvalues are xeal numbers A (where |A|>1) and 3l
the effect of T can always be reduced to

9\ _ /29 '
(p1 - <%_p0) (7.15)

R
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in which the invariant curves are hyperbolae p = const./q {fig. 45).
Thus, this kind of fixed point is said to be of hyperbolic Zype.
Actually there are two sorts of hyperbolic fixed point: the ordi-
nany hyperbolic point, where A>0 and the iterates of any point re-

Si—

And the hyperbolic gixed point with neflection, where A<0 and the
iterates jump back and forth between opposite branches {fig. 46).

X

4

& X,

Fig. 45

Xy
X

|
Fig. 46

We shall concern ourselves primarily with ordinary hyperbolic
fixed points. Obviously, hyperbolic fixed points are unsiabfe, be-
;ause any point near to 0 but not at 0 will eventually map far away

rom (.

Simple examples of elliptic and hyperbolic fixed points occurred
in Section 2. The phase plane for the swing, for example, contains
elliptic fixed points at p=0, g=2nm, and hyperbolic fixed points
at p=0, q=(2n+1)7w (fig. 47). Another interesting case is that of
plane motion under central force specified by a potential V{r).

We take the surface of section as the "radial" plane (r,pr) through

the angle 6=0. For fixed energy E, the orbit of the moving mass
is restricted by the constancy of angular momentum 12 {Eg. 2.31)
to 1ie on the invariant curves
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i Nl
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Fig. 47
12 1/2
P =t |em(E-v(r) - (7.16)
2mr
(cf. 2.33). The form of these curves is determined by
2
(r) = V(r) - -2 (7.17)
V oelr) = - s .
eff 2mr2

and of course by V(r), which we take to be of “Lennard-Jones" type
(fig. 48). The system of invariant curves depends on E (fig. 49).
The hyperbolic point corresponds to so-called oxbiting, i.e. pos-

itive-energy spiral scattering.

Between the elliptic and parabolic cases 1ie the special,
non-generic, set-of-measure-zero, infinitely-improbable-unless-you-
deliberately-set-out-to-create-them parabolic §ixed points, where
A1=A2=21; we consider only the "ordinary" type, where i=+1. Then

T can always be reduced to

q qy +Cp

P Po
where C is any constant. The invariant curves are straight lines
(fig. 50). 1In the language of fluid mechanics, the parabolic case
corresponds to simple shear flow, the elliptic case to a flow with
vorticity-dominated stagnation point {the Timiting case being a
centre of pure rotation), and the hyperboVic case to a strain-rate-
dominated flow (the limiting case being pure shear).

_In the parabolic case there can actuaily be a Line of fixed
points (p=0 in Ffig. 50) . This is familiar! It occurs
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Fig. 50

in the unperturbed twist mapping (7.4) for every curve C whose ro-
tation number is rational. This observation makes the Poincaré-
Birkhoff fixed point theorem Jook rather inevitable, because under
perturbation the curve C of parabolic fixed points "generifies"

into a finite set of hyperbolic and eliiptic fixed points whose
eigenvalues X are close to, but not exactly equal to unity. Hyper-
bolic and elliptic? VYes, and, moreover, in equal numbers. It is
obvious from the continuity of arrows in the figure on fig. 43 that
the fixed points on R€ are alternately elliptic and hyperbolic (fig.

51). Because A is close to unity, the hyperbolic points are ondi-
nary. Therefore, we can now add something to the fixed ppint theor-

em: of the Zkhs fixed points of Té that nemain aften the break-up

of the curve with notation number n/s, precisely ks ane elliptic,
and ks hyperbolic, the two types forming an altennating sequence.

Qe

Fig. b1

We have not yet arrived at the point where the full structure
of a perturbed twist mapping - i.e. a perturbed integrable system -
is apparent. There are two further steps. The first concerns the
elliptic fixed points, and follows from a sémulianeouns application
of the KAM and Poincaré-Birkhoff theorems. These apply to every
elliptic fixed point, in whose neighborhood there are closed invar-
iant irrational curves. Where the rational curves used to be, a
new structure of fixed points, half of which are elliptic, and in
whose neighborhood there are closed invariant irrational curves,
surrounded by more elliptic fixed points, and so on. Each elliptic
fixed point is a microcosm of the whole, down to arbitrarily
small scales. Schematically, this is shown on Fig. 52.
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This is still not a complete picture: we have left gaps around
the hyperbolic §ixed points. Treatment of this region constitutes
the second and final step in understanding the generic structure
of these perturbed systems. At any hyperbolic point H, four in-
variant curves meet {fig. 53).

H.

Y
N
e

H+ H +

H.

Fig. 53

Two of these are {ngoing curves H_, and the other two are outgoing
curves H_. A point X lies on H, if it arrives at H after infinitely
many iterations of T, i.e.

T°X + H as s+ , (7.19)
if X is on H+ .

Fig. 54
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Similarly, a point X is on H_ if it was at H infinitely many itera-
tions ago, i.e.

T°3X + H as s+ ,
(7.20)
if X is on H_ .

Points on H_ approach H infinitely siow1y as s+, and points on H_

receded from H infinitely slowly at s=-=, as can be seen from the
"standard form" (7.15) where H, was the axis p and H_ the axis g:

as s+tw 3 point with q0=0 maps onto

qS =0,

(7.21)
s -sani
POIA = poe + 0.

Ps

What happens as we follow the arcs H+ and H_ away from H? For

integrable systems the arcs join smoothly, as on figs. 47 and 49.
Any point X on this invariant curve (fig. 54) can be thought of as
having started out at H, mapped out along H_ and homed in back to

H along H, after a double infinity of iterations of T. More gener-

ally, when H is a fixed point of T° rather than T, H is one member
of a set of s hyperbolic fixed points corresponding to an unstable
closed orbit, and the outgoing curve H_ from H joins smoothly with

the ingoing curve H,_ belonging to one of H's neighboring hyperbolic
points {fig. 55}.

Fig. 55
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But it is intuitively obvious (though hard to prove!) that this
smooth joining is exceptional, nongeneric. So what happens gener-
jcally? One thing that cannot happen is for any arc, say H,, to

intersect itself. For if such an intersection could occur, at X,
say, then its image TX, and the image TX' of a neighboring point
X', must 1ie close together (fig. 56). But the image TX" of the
point X" shown on the sketch, cannot lie near to TX or TX', because
it must be preceded by the image of the whole arc X" X'. This con-
tradicts the continuity of the mapping (nearby points map to nearby
points) and hence is impossible. Q.E.D.

i

Fig. 56

However, it can and does happen that the arcs H, and H_ inter-

sect one another. Points X where this occurs are called homoclinic
if the arcs belong to the same fixed point H or to different points
of the same unstable closed orbit, and hetereclindic if the arcs
belong to two fixed points not associated with the same closed orbit.
We consider only homoclinic points.

Consider a homoclinic point X. How do the curves H, continue

beyond X? To answer this we must consider the iterates T {(-= <5
< + =) of the neighborhood of X. By continuity, these iterated
neighborhoods must all resemble one another, and in particular the
neighborhood of X. Therefore H_ and H_ must cross in all these

neighborhoods: just one homoclinic point is impossible, and the
existence of one implies an infinity of othens! Thus H, forms a

series of Joops intersecting H_, and vice versa (fig. 58). More
than this is true. Every point of the arc of H_ between two
intersections 1 and 2 of H_1is a further intersection. This fol-
Tows from the area-preserving property of T: without further inter-
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Fig. 57 Fig. 53

sections the shaded area would be mapped onto each succeeding loop
without change of area, and this could not happen infinitely many
times in a finite region. A1l this was known to Poincaré, who wrote:
“The intersections form a kind of lattice, web or network with
infinitely tight Toops; neither of the two curves (H+ and H_) must

ever intersect itself, but it must bend in such a complex fashion
that it intersects all the loops of the network infinitely many
times,

One is struck by the compiexity of this figure which I am not
even attempting to draw. Nothing can give us a better idea of the
compexity of the three-body probiem and of all problems in dynamics
where there is no holomorphic integral and (the canonical perturba-
tion) series diverge".

If we do try to draw what happens {following Arnol'd, Moser and
others) the resuit is Fig. 59.






Fig. 60

—----- rational tori
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This revelation of the marvelous complexity of behavior near
a generic hyperbolic fixed point marks the entry of a new stochastic
element into our discussion. For each point on an "early" Toop
{eg. the loop ABC of H_)maps onto "late" loops that are ever more

convoluted (eg. A'B'C') and wander over ever more extensive regions
of the surface of section §. Indeed these invariant curves are in

a sense area-{iLLing; this follows from the "infinitely many inter-
sections” property. Therefore a point X will eventually map ar-
bitrarily close to any other point in the region considered. Smooth
invariant curves do not exist in this region of 8. Tori do not
exist in this region of phase space! We shall return to these sto-
chastic regions, generated by hyperbolic fixed points, in the last
section. Meanwhile we complete the description of generically per-
turbed integrable systems.

The pictures on Fig. 52 had gaps near the hyperbolic fixed
points. Now we can i1l them in, at least roughly (fig. 60): they
are dense with homoclinic points.

I do not know who first drew this astonishing picture; but
even the detail shown is a woefully inadequate approximation to
the true situation. What a wonderful hierarchy! Near each rational
invariant curve there are hyperbolic fixed points with associated
chaotically wandering curves, and elliptic fixed points surrounded
with invariant curves which repeat the whole structure ad infinitum
{or ad R - see Section 9) - a lacework of intimate intermixing of
integrable and stochastic motions.

It must be emphasized that all this is in no sense pathological.
It is the genernic situation for solutions of Hamilton's equations.
{For systems that are not both classical and Hamiltonian, however -
e.g. dissipative or quantal systems - some of this richness of
structure is smoothed away.)

There is a great deal of numerical evidence for the correct-
ness of the picture of motion that we have been describing. The
studies by Hénon and Heiles of the Hamiltonian (6.9) are a good
example., On the E=1/12 section there are three hyperbolic fixed
points. On the E=1/8 section these have all disappeared, and their
neighborhood is filled by an irregular trajectory. At the Timit
of computer accuracy, one of the invariant curves surrounding the
rightmost elliptic point has broken into a chain of five "islands"-

that js, five elliptic points representing fixed points of TS, each
surrounded by thein invariant curves.

To study details of the convoluted invariant arcs near hyper-
bolic fixed points is difficult, because it requires a whole curve
to be mapped, not a single point. Any arc joining two (or the same)
hyperbolic points {fig. 61) must eventually map onto an invariant
curve joining them (fig. 62). Contopoulos has used this technique
on a problem similar to that of Hénon-Heiles. There is a closed

unstable orbit of T° with hyperbolic fixed points Xj...X, (fig.
63).  He starts with a straight arc X;»X;, and then iterates.



85

Fig. 61

Fig. 62

The complicated outcome, even after just one cycle of iteration,
is fully apparent. (Some invariant curves around elliptic fixed
points are shown dotted.)

To study the hierarchy of elliptic fixed points is very time-
consuming if the twist mapping is generated via a Hamiltonian, be-
cause the system’s trajectory between intersections with Sx must

be determined by solving the equations of motion. It is much easier
to employ an algebraic mapping, where TX0 is a simple explicit func-
tion of XO' The simplest perturbed twist mapping is a quadratic
addition to a rotation, and Hénon showed that no essential generality
is lost by taking T as the following area-preserving mapping:
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Fig. 63 (after Contopoulos)

_.)x
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2, .
X1 . Xq i Xg COS o - (po—xo) sin o
. 2 . (7.22)
P Po Py Sin o * (py-x5) cos o
This astonishingly simple transformation shows all the complexity
we have been discussing. The angle o is Tixed - it is a parameter

of the mapping. The perturbation terms in xg are small near the

origin 0, which is an elliptic fixed point of the unperturbed map-
ping. According to the KAM theorem, the perturbed mapping will also
have closed invariant curves near 0. Far from 0 the perturbation
is large and it is not hard to show that all points X escape expo-
nentially fast to infinity under jterations of T.

The interesting region lies at moderate distances from 0. Fig.

64a shows Hénon's calcuiation of the mapping plane for u=76.110.
Within the non-escaping region there is a chain of 6 elliptic islands
around 0, interlaced with 5 hyperbolic points, all these being fixed

points of T5, exemplifying the Poincaré-Birkhoff theorem. The hy-
perbolic fixed points, which we expect to be the nuclei of irregu-
lar motion, look & bit fuzzy. Fig. 64b is Hénon's magnification of
the region near the right most hyperbolic point. WNot only is "area-
exlporing" chaos nearly visibie (the dots are 50,000 iterations of
2 single point!}, but several stages of the hierarchy of islands
can be seen as weli. If the central fixed point is taken as zero-
order, then first-, second-, and third-order islands can be seen in
these beautiful pictures.

The Hénon mapping (7.22) also displays convoluted invariant
curves in the irreqular regions near hyperbolic fixed points. Using

a=66.420 Cuthill (unpublished) mapped a short line segment emanating
from one of the six hyperbolic points. After 146 iterations the

line stretched into the irregular region near the next hyperbolic
point and had begun to oscillate, as fig. 65 shows. (The line seg-
ment was. of length 0.012 and it was necessary to inciude 55000 points
on it in order for the line not to separate into dots when stretched
by the mapping. The distance between neighboring hyperbolic points
is about 0.5.)

We end this section with a few disconnected remarks. After
introducing hyperbolic points with reflection (in whose neighbor-
hoods iterates of a point zig-zag between opposite invariant curves),
we never mentioned them again. They can arise for large perturba-
tions by the "conversion" of elliptic fixed points with rotation
angles near w (i.e. eigenvalues near -1), and give rise to strongly
irregular behavior in generic cases.

‘Likewise, we have not considered heteroclinic points (inter-

- sections of invariant curves through fixed points of different closed
orbits). These must always occur along with the homoclinic points
that we found to be the source of irregular behavior, because there
were infinitely many other rational tori within the destroyed zone
near a low-order rational torus. In fact Chirikov has analyzed ir-
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reqularity in physical terms precisely by considering these "over-
lapping resonances" and the associated heteroclinic points.

Next, here is an imperfect analogy that might help in under-
standing the structure in phase space whose sections the perturbed
twist mappings represent. Imagine winding a cable starting from a
"primary” single loop of thin wire (fig. 66). Cover it with concen-
tric sheaths of plastic (tori). Interrupt this sheathing to find

Fig. 66

a secondary sheathed loop in a spiral about the primary, to close
after a Tew windings. On this secondary loop are tertiary, quater-
nary, ... windings. Continue the interrupted primary sheathings
to surround the secondaries. Repeat ad infinitum. When this proc-
ess has been completed, there will be some vacant spaces. Fill each
with an infinitely long, tangled wire. Mathematicians have recently
beggn|to study such structures, called, not surprisingly, "sole-
noids".

Finally, remember that the Tast two sections have dealt in de-
tail only.with systems with two degrees of freedom. These have a
special property: the (two dimensional) tori stratify the (three-
dimensional) energy surface E. Therefore the jrregular orbits,
which wander through regions where rational tori have been destroyed,
are trapped between remaining irrational tori, and can explore a
region of E which, while three-dimensional, is nevertheless restric-
ted, and in particular, disconnected from other irregular regions
in € (fig. 67). For more degrees of freedom, however, the tori
do not stratify £. When N=3, for example, the tori are three-dimen-
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,%k irregular‘

orbifs

Fig. 67

sional while E is five-dimensional. Then the gaps form one single
connected region, and it is conceivable, although unproven, that one
single irregular orbit might cover them all. The tori are then

a bit 1ike lines in three dimensions (fig. 68). The possibility

of so-called "Arnol'd diffusion" of the irregular orbits means that
for N>2 the existence of invariant tori for perturbed motion is no
guarantee of stability of motion, since irregular wandering orbits,
that are not trapped, exist arbitrarily close to tori.

Fig. 68
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8. STRONGLY IRREGULAR MOTION*

We have traced the origin of irregular motion in dynamical
systems to hyperbolic fixed points of associated area-preserving
mappings. If, therefore, we want models for strongly irregular
motion, it is obviously sensible to try to find mappings aff of
whese Tixed points are hyperbolic. (Clearly such mappings will
not be perturbed twist mappings, and the corresponding dynamical
systems will not be close to integrable.)

One such example is Annof'd's cat map on the unit 2-torus (fig.

69).
3 - * L
_(contents of
_each untt cell
or
the same)

x
Fig. 69
The map is

1
(x*) = ( )(XU) = (T) (xo) . (8.1)
v/ N2\ Yo

This is a special case of "rational linear automorphisms of the
torus®, where the matrix can have any integral coefficients. The

eigenvalues of T" and A" and 17", where
x = (3 +/5)2, (8.2)
so that any fixed points of " {closed orbits) must be of hyperbolic

type. Any point on the torus for which Xq and yq are rational frac-

tions is a fixed point of T" for some n - the n's becoming larger
with the denominators of the fractions - and these raticnals are the
onty fixed points (because T has integer coefficients). Thus (0,0)
is the fixed point of T, and (2/3, 1/5) and (3/5, 4/5) are fixed

points of Tz.

* See also Sec. 3 of Ref. 10, Ch. 3 of Ref. 17, and Ch. 1-3 of Refs.
2, 6 and 7.
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The mapping (8.1) shears each unit cell as shown in fig. 70.

//

What this does to a cat on the torus is shown in fig. 71. Aftef
just two iterations, the cat is wound around the torus in compli-
cated filaments. Any small area element will ultimately (after

Tm) wrap densely round the torus, because its behavior under T re-
peats in microcosm that of the unit cell: it stretched by A in
one direction, and contracts by A in a perpendicular direction {the

angle, 58.30, made by the stretch axis with Ox, has the golden sec-

tion (/5 + 1)/2 as its tangent). The disintegration of the cat
arises from the unstable, hyperbolic, nature of T, which causes
initially close points to map far apart.

Y3

Fig. 70

Fig. 71 {After Arnol'd and Avez).
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Arnol'ds cat map has homoelinic points - intersections of the
ingoing and outgoing curves H_and H_ for a hyperbolic fixed point -

and we found earlier that these are associated with irregular be-
havior. To find the homoclinic points of the fixed point (0,0) of
T, simply draw the axes of stretch {H_) and compression (H+) from

{(0,0). These are irrational directions and so wrap densely round
the torus (fig. 72), never intersecting themselves but intersecting
one another infinitely often. They also intersect the invariant

curves of the other fixed points {of Tn#1) in densely distributed
hetercelinie points.

Fig. 72

This behavior under TV is clearly engodic: "time" averages
over the iterates of any point (xo,yo) equal "space" averages over

the torus, since any set of iterates eventually covers the torus.
However, the cat map has a stronger property: mixing. This means

that after T not only does the entire past of a point cover the
space, but so also does the present of any neighborhood of the orig-
inal point. In other words, the area elements get ever more drawn
out and eventually cover the space. Mixing implies ergodicity, but
ergodicity does not imply mixing. For an example of this, recall
the phase-space tori of Section 2, on which integrable systems live.
If the frequencies are incommensurable, any orbit densely fills the
torus - the orbit is ergodic on the torus (though not on the whole
energy surface!). However, the {continuous) mapping of any point
on the torus (eq. 2.35) is such as to transfate the whole torus
rather than distort it, so that neighboring points map together and
this system is non-mixing (fig. 73}.

It is not only mappings of the plane that exhibit mixing;
"real® dynamical systems show it too. Perhaps the most important
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of these is the hand-sphere {fuid, whose mixing was finally rigor-
ously established by Sinai about ten years ago. Because of the
infinite contact potential this is obviously not a perturbation

of any simpler system (e.g. non-interacting particles). As with
Arnol'd's cat., the mixing arises from the unstable nature of the
motion, and in this case the instability is the result of collisions
between the spheres' convex surfaces.

The instability is well iliustrated by a calculation due to
Chirikov, which also shows how unpredictable these mixing systems
are, even {n principfe. No hard-sphere fluid is isolated, for it
is impossible to screen out at least gravitational perturbations.
Therefore let the fluid (sphere radius r, mean separation £, mean
pa;tic]e speed V) be perturbed by a mass M a distance D away (fig.
74).

Consider a molecule 1 moving to-collide with 2. Both 1 and
2 will fall towards M, but at different rates, and the tidal (i.e.
relative) acceleration will be (order of magnitude)

Fig. 74
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GM2
a ""—3' . (8.3)

D

This will render 1's position of impact on 2 uncertain by

AS -~ _2 3 (8.4)

AD ~ == 3 2 . (8-5)

This in turn will render the reflection angle after succeeding col-

1isions uncertain by {&/r) 28, (ﬂ.lr')2 AB, (R/r)3 AB ..., 50 that
the number, n, of collisions after which the determinacy is lost
(angle uncertain by 1 radian) is

p3ver

an(1/00) _ " ame®
e Lfr &n o/r

(8.6)

Now let the fluid be oxygen at NTP and let M be an electron

at the limit of the observable universe, i.e. D~1010 Tight years.
Then we get n~56! If the spheres are billiard balls (r~3cm,p~30cm,

V~1ms'1) and M is someone in the billiard-room (M-50kg, D~Im), then
we get n~9! Unstable indeed! It would be amusing to work out the
effects of these perturbations on the electrons in computers doing
molecular dynamics calculations. (The uncertainty arising from
quantum mechanics gives n=0 for-oxygen - i.e. even the first col-
Tision cannot be accurately "aimed" - and n=15 for billiard balls.}
It is worth emphasizing that Sinai's proof that hard spheres
form a mixing system is valid not only in the "thermodynamic 1imit”
(exceeding one!). The simplest case is two discs, moving on a closed
. two-dimensional surface with Euclidean metric; this has to have the
topology of a torus. Even if one disc-is fixed (a hole in the torus)
the motion of the other is mixing (fig. 75).
Another mixing system is a mass point moving on a geodesic on
a closed surface whose Gaussian curvature (product of two principal
gurvatures) is negative everywhere. (This is rather unimaginable
in that a closed negatively-curved surface cannot be embedded in
a Euclidean 3-space, but in its four-dimensional form it may have
cosmological implications.) The essential point is that on such a
surface two geodesics that are close and paraliel at some point will
separate exponentially for past and future times (fig. 76): this
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contrasts with the convergence that occurs on positively-curved
surfaces, e.g. spheres. This behavior can be derived from the fact
that a geodesic js a space curve, lying in the surface, whose princi-
pal normal always coincides with the surface normal. The "torus
billiard table" is actually a special case of this negative-curva-
ture system.

Fig. 76

Now we understand, at least in outline, how ergodicity, mixing
and loss of determinacy arise. We have yet to consider the approach

P




98
to equilibnium, and randomness. As a model for these two kinds of

behavior, we now discuss the Baker's tnansformation. This is the
following area-preserving map on the unit square (x,¥):

X 2X
(1>=( 0) i 0< xy < 1/2
Y1 yO/Z

(8.7)
2x0-1
y0+1
2
Pictorially, the map transforms as shown on fig. 77.
V] ,H\ ﬁ
A e B =
= =
o) S 0 ] 2x O "
Fig. 77

The process resembles the rolling-out of dough; hence the name.

Any area element will ultimately stretch into a long horizontal
filament crossing the square many times. ‘Therefore the map is mix-
ing and hence ergodic.

The Baker's transformation is perfectly deterministic and re-
versible (time-reversal gives a similar mapping with stretching
along y instead of x). To demonstrate the inexorable approach to
equilibrium it is necessary first to define a distribution function
fn(x,y) after n iterations. The "Liouville" equation of motion

for fn(x,y) is, from (8.7),
f(xy) = fq(F, 2y) if0<y<1/2
(8.8)
= fn-l(igl , 2y-1) ifl/2<y<1.
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Next we must coarse-grain fn to remove some of its fine-scale in-
formation. We do this by defining

1
W (x) Eé dy £,(x.y) . (8.9)

This corresponds to integrating out uninteresting phase-space vari-
ables in a mechanical problem. From (8.8) we get W's equation of
motion:

1/2 1
() = Ly £ G 2) v L dy Fg EL 2-1), (8.10)

j.e.
W (x) = 1/2 TH_(3) + w550 . (8.11)

If fn(x,y) is normalized to unity, so is wn(x), and this equation

preserves that normalization under iteration.
The "equilibrium" solution wn(x)=1 obviously satisfies (8.11).

" Moreover, any initial Ho(x) will tend to unity after an infinity of

jterations, since one iteration replaces the value of W at x by

the mean of its values at two points (x/2 and x+1/2) surrounding

% - i.e. the mapping has a smoothing effect. It is amusing to verify

tgis by showing how iteration must destroy all Fourier components
Tiix

e (2=1,2,3...) describing the variation of wo(x). From (8.11),
. Zﬁgl ZN;EX 2$;2 Zﬁfl 211 9%
e2“12x , {dte Je + {1+e ) {l+e ) e 4 N
2 2 2
2nig (8.12)
oM

> rle
1 [

n=1
A bracket n in this product must always vanish, since this requires

Z_T‘r{:= (20H)r 5 i.e. 222"V (am1) (8.13)
2

for some m, so that any odd-% components vanish on the first itera-
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tion, and‘any even % must be 2n times an odd number for some n.
Thus any initial Ho(x) does indeed iterate to equilibrium.

Equation (8.11) for wn(x) resembles the "rate equation" for

a random walk process (steps to x from x/2 and {x+1}/2), and we

now show that the Baker's transformation (8.7) does indeed have a
stochastic character. Let x, and y, each be represented by a. binary
"decimal": 0 0

Xy = oBq8pBady +evs
0 17273 {a's and b's all 0 or 1).

Yy = .b1b2b3b4 cean (8.14)
Put these "back to back":

{ovenn. b4b3b2b1-a'1a2a3a4 ...... 1.

(8.15)
The Baker's transformation corresponds to a shift of the decimal
point one place to the right! This is because such a shift doubles
x and halves y, and automatically takes care of the conditions aris-
ing if x4 3 1/2. Let us agree to label the orbit of (xo,yo) a

sequence of 0's and 1's according to whether the iterated points have
x<1/2 or x>1/2. Thus the sequence of numbers is just the sequence
of first binary digits of the x-values of the iterated points, a
doubly infinite sequence -= < n < + », Because the Baker's trans-
formation is isomorphic to the shift of decimal point in (8.15),

and the first binary digit of x is the number immediately to the
right of the decimal point, the sought-for sequence is simply

{oeenne b4b3b b {8.16)

LI LYCPCIARTRRRE }. |
Now, "almost all” initial points (xo,yo) are {rnational, so that

the decimals (8.14) are nonterminating, nonrepeating sequences that
could have been obtained by tossing a coin (0 = heads, 1 = tails).
Therefore almost all orbits in the Baker's transformation,
although perfectly deterministic, can be made to generate a set of
“pandom” numbers. {The exceptional orbits are the set-of-measure-
zero closed orbits generated by rational initial points (xo,yo).)

The central mathematical tool that is used here is the correspon-
dence between the system considered (Baker's transformation) and the
so-called Betnowilli shift on inginitely many symbols (moving the -
in 8.15). In recent years a number of such correspondences have
been found, and it seems as if this idea goes right to the heart

of the problem of finding randomness in deterministic systems. Most
important, it has been shown that near any homoclinic poini of a
mapping another mapping can be found which corresponds to a Ber-
nouilli shift. To describe this map, refer to fig. 59. In any
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region R (e.g. the shaded guadrilateral) there will be a dense set
of points P that eventually map back into R. The map T in question

js from P to its point of first return to R, TP.

Such homoclinic points, we learned, occur for generic Hamil-
tonian systems and not just for abstract algebraic mappings. There-
fore, in real mechanical systems there are orbits describable by
random sequences of integers, and we end this section with three
examples of such systems. All involve a change in the unperturbed
motion as energy varies, from bounded to unbounded.

The first example is Sitnikov's case of the three-body problem.
Two equal "primary" masses M move in ellipses about their centre
of mass 0. The test mass, m0, in whose motion we are interested,
moves along the line 0Z perpendicular to the plane in which the pri-
maries move {fig. 78). Its orbit is z(t). The perturbation e is
the eccentricity of the primaries' ellipse. With suitable scaling
(6=1, M=1/2, stretching of t coordinate) we have the distance r(t)
of either primary from 0 as

r(t) = 32- (1 -¢cos 2t) +0(c?) . (8.17)

A‘m->0

Fig. 78
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Under the primaries' gravitation m's equation is

d2

§ R — (8.18)
dt

G

which comes from a Hamiltonian

2
H=%- . (8.19)

4 22+r§(t)

For the unperturbed motion (r8 s 1/2), H{=E) is a constant

of motion, and the phase plane z,p for this one-dimensional system
is as shown in fig. 79.

P
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Fig. 79

E=0 separates bounded motion (E<0), in which m oscillates between
the primaries with period (fig. 80)

2 .. \1/2
(1/E°-1/4)
dz _2<E<0 , (8.20)

2n
T(E) = 2= 4
olE) 0 (a(es(zPH/8) 2N/

from unbounded motion (E>0) in which m moves from z = #= to z =

T . We can define a discrete mapping on 8 = (z,p) by plotting
the position and momentum of m at the discrete times

t = {on.n. 2,-1,0,1,2,35 veve. Y, (8.21)
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that correspond to periods of the primaries.

L T(E)

o

— T/

..:l (J

Fig. 30

For e=0 the iterates of any point X = (z,p) move around one of
the E-invariant curves (fig. 81), making ever smaller fractions of
a revolution as E»0 from below. The line E=0 is an invariant curve
Joining two unstable fixed points at |z| = =, p=0, each of which
is a degenerate kind of hyperbolic point. Uhen the eccentricity
€ 1s switched on, H is no Tonger a constant of the motion, but the
KAM theorem tells us that closed invariant curves fill most of the
region near the origin p=0, z=0, and we also know that there will
be small irregular regions near unperturbed orbits with rational
period T (remember the perturbation has period unity). These ir-
regular orbits are bounded however - the resonance between M's and
m's motion can never catapult m to infinity - because the irregular
motion is trapped (on S) between smooth KAM curves.

P

4

Fig. 81
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The situation is however very different near E=0, where the
unperturbed motion is itself unstable. We define an integer sequence
from our mapping as follows: let ty be the times of zeroes of any

solution z{t} (i.e. times when m crosses the primaries' plane).
Without loss of generality we can take 0 < to < 1. Then we define

the doubly infinite integer sequence {Sk}
Sy = integer part of teey " tys z(tk) =0 . (8.22)

Thus Sk measures the number of iterations of the mapping between

successive zero-crossings of z(t). What Sitnikov and Alexseev showed
was this: given any small ¢, a motion z(t)} can be found that cor-
responds to any sequence {Sk} provided all Sk exceed some number

m(z). As e»0, m{e) - « so that the erratic orbits {random {Sk})

whose existence this result implies (fig. 82) are concentrated in
narrow regions near E=0.

Fig. 82
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An important feature of this result follows from the existence of
sequences {Sk} with one or two Sk equal to infinity. These cor-

respond to "escape" orbits, which oscillate infinitely often before
7 becomes infinite (fig. 83),

Z A4
N\ ~ "
NS \'\/ \./ 7

Fig. 83

or "capture" orbits, which fall in from infinity and then oscillate
infinitely often (fig. 84),

ZA

/\-/\ 2, N I,

Fig. 84
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or "capture and escape" orbits, where m falls in from infinity, os-
cillates arbitrarily often and then escapes (fig. 85).

24\

N/ ot

~ Fig. 85

Of course, the S, can be totally #andom {provided Sk > m{e)}, so

once again we have "stochasticity within determinism". These results
apply alsoc for large perturbations e.

Our second example is the swing. The unperturbed case, and
associated invariant curves, was considered in section 2. The per-
turbed case has the swing periodically excited by varying the Tength
% with period unity:

9+ LD(I + ¢ cos 2mt) . (8.23)

The map on the plane $ = {q,p} is defined by the p and q at integer
times t. When £#0 the Hamiltonian {2.20) is no longer a constant
of the motion and the system is nonintegrable. Nevertheless, in-
variant curves still exist except where the period

m
T=2Re |

dq
-m_[2 (E+mg% cos q)
m

is nearly rational. The irregular motions in these "gaps" are lim-
ited in amplitude except near E=mg% which corresponds to the unper-
turbed orbit with a hyperbolic fixed point at g=¢rv (fig. 86). Here
it is possible to define arbitrary sequences {Sk} as in (8.22) with

q replacing z. Thus Sk measures the integfal part of the time in-

, E < mgd , (8.24)
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terval between tk and tk+1 when the swing is momentarily at rest.

By analogy with the previous case it is likely that any sequence
{Sk} with Sk > m{e) corresponds to an orbit. In this problem, how-

ever, the topology of motion is different and suggests defining a
new sequence {rk} by

P = jnteger part of |q(tk+1)-q(tk)|/2w ; (8.25)

then Lo gives the number of rotations per libration. For the un-
perturbed swing Tk = 0 if E < mgg and re = if E > mg%; it would
be interesting to know whether r can take on a "stochastic" range

of values when £#0, for energies near mgi.

These stronaly irregular motions occur for E near mgf - the
unstable case. It is amusing to look at the perturbed swing motion
near equilibrium (E = -mge), where the unperturbed motion of q(t)
is 1ike a harmonic oscillator. Then (2.22) becomes, when linearized

§(t) + & (1-¢ cos 2nt)q(t) = 0. (8.26)
0

This is Mathieu's equation, better known to physicists as Schrg~
dinger's equation for an electron in a one-dimensional solid with
sinusoidal potential with unit spatial period. The "wave function®

is
ikt
q{t) = e x periodic function of t,
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Fig. 87

where k is real except for "energies" g/!LO in the neariy-free-elec-
tron "band gaps" (fig. 87} centered on

(8.28)

In these gaps, k is imaginary and e1kt can grow exponentially -

the swing's equilibrium is unstable and its deflection grows exponen-
tially. What has happened is that for these unperturbed equilibrium
frequencies wy the elliptic fixed point at the origin of (q,p} has

eigenvalues near * 1, i.e. is nearly panabolic, and so is easily
converted into a hyperbolic fixed point. For small e the real,
nonlinear problem has invariant curves near ¢=p=0 so that the expo-
nential instability is soon quenched - the swing's frequency is no
Tonger wy and the resonance is lost. Children don't know this,

but they automatically adjust the frequency (of altering the length
2) to suit the "local" unperturbed frequency, and this nongeneric
perturbation beats the KAW theorem! A dramatic example of this
"adaptive pumping" occurs at the shrine of Santiago de Campostella
in Spain, where according to H. Pomerance, pilgrims qet incense to
burn by swinging a brazier hanging from the ceiling, increasing the
amplitude to about 180° by shortening and Tengthening the supporting
rope (fig. 88).
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Our final example is the collisdion of a aigid-rotor rolecule
with a surface. The molecule is a dumbbell with Tength d and two
equal masses m/2, with centre of mass at height z above the surface,
with which each mass interacts according to a Lennard-dJones type
of potential U(z)} (fig. 89).

d 7 m/a.

Fig. 89

This problem has two degrees of freedom, z and the dumbell's angle
®. Consideration of the forces and torques acting leads to the Tol-
lowing Hamiltonian for smail d:

2 2
P 2p ' 2
_ 2z <] u" {z)d~ . 2
H= i 2u(z) + ;Eﬁ +e i sin “@ . (8.29)

The last term is the perturbation, describing the torque exerted
by the surface. e+0 describes the gradual switching-off of this
torque (e.g. by sphericising the dumbbell). We take the surface
of section as Sz = {a,pz} defined by ©=0 (molecule parallel to the

reflecting surface). H(=E) is always a constant of the motion,
fixed on Sz.

When =0 (unperturbed case), Po is a constant of the motion too
(unhindered rotation), and SZ is covered by invariant curves whose
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equation is
P =+ {{(E - 2U(z) - ZPg/mdz)Zm}UZ , (8.30)

Z

sketched in fig. 90 for some positive E.

Pz, Po =0

/2P; fod® = E

N
=

4

Fig. 90

Once again there is a quasi-hyperbolic fixed point at infinity (cf.
Sitnikov's problem}, when ZpE/md2 = E. The "rotation number" a(Pe)
of this mapping is (cf. 7.3)

w
4 m d

2pgRe é dz/{%(E - 2u(z) - 2pg/md2)}

p =
02( G) W, ]/2 *

(8.31)

o

which vanishes at the "escape” critical angular momentum |p9| =
d /mE/2 (fig. 91).
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When €#0 we once again expect strongly irregular behavior near
the Po corresponding to escape for the given E. An interesting

integer sequence is again {rk} of (8.25), with g replaced by & and
ty denoting the k'th crossing of the potential minimum z by the
molecule. Then an infinity in the sequence {r } would correspond

to escape (capture) of the molecule by the surface, preceded (suc-
ceeded) by oscillatory trapping in the well of U{z}. Rigorous state-
ments about {rk} and similar sequences would be very useful in

surface physics, where questions of capture and escape are studied
largely by computations which, in view of the probably pathological
dependence on initial conditions, are difficult to interpret.

Perhaps the most striking aspect of these modern developments
in mechanics is the detailed understanding of the way in which sto-
chastic elements enter into the motion of systems governed by causal
equations. It is instructive to end this section by quoting from an
essay written by Maxwell in 1873, showing how sophisticated was his
philosophical thinking on these matters.

"It 48 a metaphysical doctrine that from the same antecedents
follow the same consequents. No one can gainsay this. But it is
not of much use in a wonld Like this, .in which the same antecedents
never again concur, and nothing even happens twice...

The physical axiom which has a somewhat similarn aspect L4 'that
from Like antecedents follow Like consequents.' But here we have
passed grom sameness Lo Eikeness, grom absolute accuracy fo a mone
on Less hough approximation. Thete are centain classes of phencmena
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. in which a small evion in the data only {ntroduces a small ernohr
in #he nesult ... The cowwse of events in these cases 44 stable.

NThere ane other classes of phenomena which are more compli-
cated, and in which cases of instabifity may occut, the numbenr
0f such cases increasing, Ln an extremely napid manner, as the num-
ber of variables increases...

" . .Eveny existence above a certain nank has Lts singufar
points: the highen the hank, the more of them. At these points,
influences whose physical magnitude L8 Loo small to be taken account
of by a f{inite being, may produce nesulits of the highest dmpontance

"I1§, therefonre, those culiivators of physical science from whom
the intelligent public deduce their concepiion of the physicisl...
ane Led in persuit of the arcana of science to the study of the
singulanities and instabilities, nather than the continuities and
stabilities of things, the promotion of natural knowledge may fend
to nemove that prejudice in javor of deteaminism which seems 1o
anise §rom assuming that the physical science of the future L5 a
mere magnified image of that of the past.

9. SEMICLASSICAL QUANTUM THEORY FOR NONINTEGRABLE SYSTEMS

In a general context, all of the complicated classical behavior
that we have described must be regarded as the Timiting behavior of
the corresponding quantal system when Planck's constant R is neg-
1igible. Now in this last section we shall discuss some of the
Targely unsolved problems arising when f is not negligibie but is
small enough {in comparison with classical quantities of the same
physical dimension) for us to hope that the guantal behavior can be
understood in terms of the ciassical behavior. In other words we
intend to discuss "semiclassical mechanics". For simplicity the
treatment here will be restricted to bound quantum and classical
systems, where the main problem is the determination of semi-classi-
cal energy levels. This is not a problem that can easily be Jeft
to a computer, because of the interaction between numerical noise
and the increasingly fine scale of oscillation of wave functions
as f-0.

For integhable systems the problem is well understood and the
levels are given explicitly by a quantum condition best expressed
with the action-angle formalism explained in Section 2, as follows.
Let the energy levels in an N-dimensional sysiem be labelled by N
quantum numbers m = (m]...mN). Then the m'th bound state is associ-

ated with a particular toaus lm’ and its energy Em is given by the
Hamiltonian (2.14) expressed in action variables:

E@.: H(lﬂ) . (9.1)

The quantized tori lm 1ie on the points of a lattice in the N-dimen-
sional I space whose unit cells have side length R. The only subt-
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lety is that the origin of the lattice is usually not at the origin
of 1 space, so that

L= (m+ /o), (9.2)

where a = (a1..a]...uN) describes this displacement. The numbers

oy are integers equal to the number of "turning points" of the pro-
jection onto g space of the i-th jrreducible circuit A\ of the

torus lm’ i.e. the number of places on Y; where the torus is "normal"
to the g space. On the schematic fig. 92, for example, a " 0
{*rotation") and a, = 2 ("libration™).

PI s P’-

turnina
points

9
92

Fig. 92

The quantum condition (9.1)-(9.2) generalizes the old rules
of Bohr and Sommerfeld. Perhaps the sasiest way to obtain it is
by demanding single-valuedness of the simplest .K.B. wave function
obtained by solving the time-independent Schriédinger equation to
lowest orders in R. This gives a travelling wave at any point q
and hence corresponds to just one of the possible intersections in
phase space of the manifold g=constant with the torus I to which
the wave function corresponds. This "local" W.K.B. wave is

2 1/2 i
3 S(Q_:l_) 3 5(94)
WD) = Cldet 57— " (3.3)
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where $(g,I) is the actjon integral (2.6) with the constants f cho-
sen as I, and C is a constant. After going around Y; the action §

in {9.3) has acquired an increment of ZnIi (cf. equation 2.13). How-

ever this is not the only source of change in ¢, because the deter-
minant becomes infinite at turning points on i To see this, re-
alize that (2.15) implies

2 3

3°S _ [Jacobian(e)]™! (9.4)

det 39,31 30

The Jacobian vanishes at turning points on Yy and if the o such

zeroes are simple each contributes a factor e'™, so that the total
phase increment of ¢ round Y; ig

AL L
..Hl.- - - {9.5)

For ¢ to be single valued this must equal 2ﬂmi, where m; is an in-

teger, and (9.2) follows at once.
It must be emphasized that the frequencies w (equation 2.36)
play no part in the quantum conditions. In particular, closed or-

bits, corresponding to tori I for which the wy are commensurable,

will in general not be selected by equation §.2. Therefore it is
false (at least for integrable systems) to claim as some authors
have done that guantum states are associated with closed orbits
around which the action is an integer times . However, the closed
orbits do play a most interesting role in determining the density of
states function

n(E) = J 8(E-E) . (9.6)
m —

This can be transformed, using the quantum condition, into a rep-
resentation of n{E) as a sum over all topologically different closed
orbits (i.e. all "rational" tori). But each closed orbit gives not
a set of levels but an oscillatory contribution to n{E); the more
complicated closed orbits (high-order rational tori) give faster
osciliations. As more and more closed orbits are included in this
"tupological sum" sharp peaks begin to appear and eventually turn
into the delta functions corresponding to the energy levels.

What if the quantum system is classically nonintegrable? There
will of course still be energy levels, and it is not hard to show

that on the average, each level occupies a volume hN in phase space,
so that the average density of states n(E) is
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AE/2
n(E) = Tim(AE»0)1im(F~0) ‘{ dE'n(E+E") = ;]N— ff dg dp &{E-H(g,p}).

E
= (9.7)

But the levels can no longer be located by (9.1) and (9.2) because
in nonintegrable systems the whole basis of the quantum conditions
breaks down. This is because in the "irregular" regions of phase
space, near unstable closed orbits, tori I do not exist, and there-
fore the quantum numbers m cannot be defined. As long ago as 1917
Einstein realized that semiclassical quantum mechanics must be very
different for integrable and nonintegrable systems. He saw a con-
tradiction in theoretical physics as it then existed, that the (in-
tegrable) systems which could be quantized at that time, and the
(nonintegrable) systems to which statistical mechanics could be
applied, fell into two mutually exclusive classes. He expressed
the hope, soon to be justified, that a properly formulated quantum
mechanics would remove this contradiction. These prescient remarks
seem to have been ignored until 1972, when Percival pointed out
that in the light of the much deeper understanding of classical me-
chanics provided by the KAM theorem etc. it was time to return to
the problem recognized by Einstein.

Percival's suggestion was that the quantum levels in the re-
gions of phase space occupied by irregular trajectories will form
an .iuregulan sApectium, with properties very different from the
negulan specthum arising from those regions of phase space filled
with KAM tori providing a basis for quantization according to (9.2}).
The two sorts of spectra would be distinguished by their behavior
under perturbation - for example by an electromagnetic wave if the
system is a nonsymmetrical molecule. Such a perturbation strongly
couples together levels of the regular spectrum with similar gquantum
numbers m; these coupled Tevels have energy differences of order f.
By contrast, under perturbation aff levels in a-given irreqular
region would be weakly coupled; these have the much smaller energy

spacing hN, so that the irregular spectrum is much more sensitive
to perturbation than the regular spectrum, and under poor resolu-
tion might be confused with a continuous spectrum.

Apart from some exploratory computations indicating that non-
integrable systems do indeed have some energy leveis that are very
sensitive to perturbation, practically nothing is known about the
irregular spectrum. However, it is possible on the basis of the
KAM theorem to arrive at what seem to be reasonable conjectures about
the way that regular and irregular regions are distributed in sys-
tems whose departure from integrability is described by a perturba-
tion parameter €. Let us confine the discussion to two degrees of
freedom, and recall the arguments of Sections 2, 3 and 4, especially
the crucial eauation (4.12) giving the widths of the resonance zones,
near rational tori, in which irregular orbits exist. Figure 93
illustrates the Towest-order resonance zones in the "unperturbed"

1 space which has been quantized according to equation (9.2} [the
1/1 tori for example, inhabit the locus of points in I space where
the normals to the contours H(I}=E 1ie at 45° to the 11 axis].
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I claim that the approach to the classical Timit is non-uniform
in €. For fixed (small) e there appear to be three semi-classical
hegimes as RF+0: These regimes are distinguished by values of a
parameter B that will now be defined. Surrounding any point I is

the area ﬁ2 corresponding to a quantum state, This area will be
crossed (fig. 93) by infinitely many resonance zones, the widest of
which has the frequency ratio r/s with smallest s (equation 4.12).
Between two energy contours whose perpendicular separation |Al]

is fi this widest resonance will occupy an action area A (fig. 93).
Then B is defined as

g = A/RE . (9.8)

When g is small it is a measure of the proportion of the quantum

area Ez occupied by irregular trajectories. Large 8 indicates that
resonant zones near I contain many quantum states. Elementary geom-
etry and use of (4.12) give the estimate
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= Rx width of widest resonance

h

w
t

t

hix |Lix angular width of widest-resonance

52

K(e) 11i/Rs?"5 . (9.9)

Therefore B is large in the semiclassical limit (h small), and also
for large perturbations g, Tow order resonances (s small) and high
excited states ({I} large). )

In the finst semiclassical regime h is small enough for a semi-
‘classical treatment of the unperturbed system to be valid, but
is so small that 8 << 1 for all I in the energy region of interest,
‘even those crossed by lowest order resonances (s=1). The irregular

regions occupy only a small fraction of the quantum area EZ and so
do not affect the form of the quantum states >, In effect Planck's
constant h blurs all the pathology of the classical orbit structure.
Under these circumstances quantization by tori based on equations
(9.1) and (9.2) can be employed to Tocate the perturbed quantum
Jdevels Em’ the actions 1 being approximately calculated by means

¢

of a perturbation scheme such as that discussed in Section 2.

" Marking h smaller leads to the second semiclassical regime,

“In which B is of order unity for states whose actions I lie in the
ilowest resonance zones. Then there will be a few states whose quan-
ftum area is dominated by jrregular trajectories. The energies of
"these states will still be given approximately by (9.1} with 1 ob-
‘tained by interpolation from tori near the irregular region. How-
-aver, the wave function ¥(g) will no longer be given by the WKB ex-
pression (9.3} because the torus on which it is based no longer
exists.

So what does such an “irregular state" Took 1ike? Since it is
in phase space rather than in real space that the irregularity as-
sociated with nonintegrability manifests itself, it seems sensible
to study a quantum object defined on phase space. Such an object
is the Wigner function w(g.p). defined as

'%(R'Q’rﬂ- 1) %(ﬁ-ltfﬁ'g)
e <ple

w(g_,g)s;;—N fdgfdn >, (9.10)

TWhgre ~ denotes an operator. It is well known that this can be
“written in the following unsymmetrical form involving the wave func-
tion y(q):

/R
¥(g.p) = *1”—,\; [ dXe olg + k(e - (9.11)
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For states in the "integrable" parts of phase space filled with tori
the WKB wave function can be employed to take the classical limit
of ¥, with the pleasant result that the Wigner function for such

a state with quantum number m condenses as h»0 onto a delta function
on the torus lm, i.e.

R0 (1(q,p}-1.)
¥ ( P s .

{9.12)

(When h increases from zero ¥ develops "fringes" about the torus
lm_that have a characteristic “Airy function® form).

This makes it natural to conjecture that the Wigner function
for an "irregular state" spreads over the corresponding irregular
region in phase space, and a surface of section for the energy E
of the quantum state might show a series of nandomly distributed
maxima and minima of ¥. Figure 94 is a sketch of this conjectured
behavior, to be compared with say, the inner irregular region on
fig. 60. At this state we can only guess what sort of randomness

P
(I
-
{" 4
-, 1
Fig. 94

v will display. Probably it will be the "Gaussian" randomness stud-
ijed in noise theory. It is also likely that the wave function ¥(q)
in coordinate space is also of Gaussian random type for irregular
states, with the mean intensity falling to zero at 'anticaustics’
on the boundary of the region in g space explored by the orbit.
This morphology of ¥ contrasts strongly with that for regular states,
which have strong patterns of maxima and minima near intense caus-
tics at the classical boundaries.

Further diminishing h leads to the third semiclassical negime
which is the semiclassical 1imit proper. Now g is large for I in
all lower-order resonance zones. The corresponding irregular regions
in phase space will be densely populated with quantum states; in
other words the lattice spacing in fig. 93 gets so small that each
zone contains many lattice points. The group of states in each
irregular region cannot now be jndividually labelled with quantum
numbers although they may be said to share a “vague quantum number"
corresponding to the destroyed region I in unperturbed action space.
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Quantization by tori cannot now be applied in any sense. The Wigner
function ¥ for any single state will presumably spread over the whole
irregular region of the energy shell, and the surface of section js
conJectured to resemble fig. 94 but with a much finer granularity

in the randomness.

This does not exhaust the description of the generic structure
of the third semiclassical regime, because there will be points I
in high-order resorance zones where 8 is of order unity, and points
I in still h1gher -order zones where B is small. Therefore along with
the groups of "irregular states" just described there will also
be states of the fype described for the first and second regimes.
What seems to be happening is that the smaller values of h expose
more of the inginile hetferogeneity of the classical onbit stwcture
so that the quantum states become more varied in nature as well
as more numerous.

When e is zero this heterogeneity of structure is absent, be-
cause the system is integrable and there are no irregular regions;
Wigner's function ¥ for every state is a "fringed torus". When
g 1s large this heterogeneity is also absent, because the resonant
zones have expanded and eaten away all the tori and all motions
are irregular; Wigner's function for every state should now be
disordered and spread all over the energy shell in phase space.

Fig. 95 summarizes this picture of the gener1c structure of the
semiclassical 1imit.

My opinion is that the full elucidation of the nature of ir-
regular states and of the mingling of regular and irregular states
as € and h vary will require the development of new conceptual and
mathematical tools. Perhaps Wilson's celebrated "renormalization
group" technique recently developed to study disorder on all scales
in statistical mechanics might play some part.

£
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