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Abstract 

Black holes have piqued much curiosity. But thus far they have been important only in 
"remote" subjects like astrophysics and quantum gravity. We show that the situation can 
be improved. By a judicious application of black hole physics, one can obtain new results 
in "everyday physics." For example, black holes yield a quantum universal upper bound 
on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown 
earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black 
holes set a limitation on the number of species of elementary particles-quarks, leptons, 
neutrinos-which may exist. And black holes lead to a fundamental limitation on the rate 
at which information can be transferred for given message energy by any communication 
system. 

The astrophysical roles of  black holes are by now widely appreciated. Their 
importance for understanding quantum gravity is also accepted. Still, most 
would regard the black hole as a curiosity devoid of  relevance for everyday 
physics. After all, astrophysics is far from the laboratory,  and quantum gravity 
may never be testable experimentally! This view is unduly pessimistic. As I shall 
show, a judicious application of  black hole theory can give new insights into 
everyday phys ics -ord inary  thermodynamics,  particle physics, communication 

theory.  
Black holes have suggested a new principle in statistical thermodynamics:  

"the entropy-to-energy ratio S/E of any system which can be enclosed in a 
sphere of  radius R cannot exceed 2~R/~c" [1] (we take k = 1). To see why this 
is so, at least for systems with negligible self-gravity, consider (for simplicity) a 
spherical system of  radius R, rest energy E, ent ropy S, which we allow to be 
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absorbed by a large black hole, so large that Hawking's radiance contributes 
negligibly to the entropy bookkeeping. In the process the entropy of the ex- 
terior world, Sext, decreases by S; the black hole entropy Sbh [2, 3] increases by 
�88 (units with G = c = 1), where AA is the growth in event horizon area. 
Two distinct arguments set the lower bound AA t> 8rrER if the system's self- 
gravity is negligible. One argument [2] extends Christodoulou's reasoning [4] 
about reversible processes to the case when the injected particle has finite radius 
R. It shows that the quoted lower bound is attainable for "reversible" injection 
orbits. The second argument [5] obtains the same lower bound by integrating 
the Newman-Penrose equations for the growth in horizon area in response to the 
passage of stress-energy. Thus Sbh /> 2rrER/hc (we restore c). 

The generalized second law of thermodynamics [2, 3] (whose success in pro- 
cesses where Hawking's radiance plays a role [3] leaves little doubt about its 
general validity) now requires that S <~ 27rER/hc, for otherwise Sex t + Sbh could 
be made to decrease by injecting the system in a "reversible" orbit. Thus, argu- 
ments based on black hole thermodynamics (which were already implicit in the 
early papers on the subject [2, 5] ) lead to the bound S/E <~ 2nR/hc for any 
ordinary spherical system with negligible self-gravity. This result in statistical 
thermodynamics is apparently new. That the bound on S/E is trivially satisfied 
by systems of nonrelativistic particles was known early [5]. The applicability of 
the bound to systems of massless quanta, i.e., radiation, is not so trivial to 
demonstrate directly, but this has been done recently. 

The most transparent demonstration is that of Gibbons [6]. He considered a 
quantum scalar field of definite energy E confined to a cavity of some shape. 
The entropy of the system he computed from Boltzmann's formula S = In W in 
terms of the number W of many-particle states with the given energy. Gibbons 
worked out S/E for several cavity shapes, and showed that in every case S/E < 
27rR/Ctc i fR is taken to be the radius of the sphere which circumscribes the 
cavity. A more general, though more involved, approach is to compute S and the 
mean energy ff  of a quantum field in a cavity from the density matrix. One 
includes in ff the vacuum energy in order that f f  be the gravitating energy-this 
relates it directly to the E in our gedanken experiment featuring the black hole. 
It has been possible to show [1] that, for arbitrary container shape, and for an 
arbitrary admixture of scalar, electromagnetic, and neutrino fields, S/-ff < 2rrR/gtc, 
where R, again, is the radius of the circumscribing sphere. In a rather different 
approach Wald, Sorkin, and Jiu [7] have shown that a self-gravitating sphere of 
radiation, which may be as close to its Schwarzschild radius as allowed by the 
wave character of its contents, also obeys S/E < 27rR/hc. 

The role played by black holes in bringing to light this new principle in 
thermodynamics has been primary. The argument from black holes suggested a 
well-defined bound for S/E. The role of the statistical arguments just described 
has been to confirm, to clarify the meaning of R, and to show that the bound is 
also valid for self-gravitating systems. 
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The versatility of the bound is especially highlighted when it is applied to 
situations not ordinarily regarded as within the province of thermodynamics. For 
example, one can use it to gain some information about the number of ele- 
mentary building blocks of matter-quarks and leptons. The present picture of 
particle physics is that mesons and baryons are two or three quark composites, 
respectively. Quarks and leptons are arranged in "generations." The first genera- 
tion contains the electron, the e-neutrino, two quarks with charges +-~ and --~, 
respectively (two quark flavors), and all their antiparticles. Three such genera- 
tions are known today, all exactly analogous in structure. There could be more; 
in fact, there could be twenty, or fifty, and particle physics would be saddled 
with hundreds of "building blocks." This depressing possibility may be ruled out 
by appealing again to the bound S/E <~ 2zrR/,hc. An early argument of this type 
dealing with leptons is due to Mariwalla [8]. Because it is hadrons, not leptons, 
which are composite, the bound is more credible for hadrons, and it is here 
applied to them. 

The idea is to think of, say, a baryon as a cavity or "bag" containing three 
quarks. One is interested in the ground states of such systems, namely, in all 
unexcited baryons. As a first approximation one could neglect mass differences 
between the various quark species, and regard all unexcited baryons as having 
the same radius R. The generic baryon would thus be endowed with a definite 
value for ER,~c. Since it is composite, the baryon should be larger than its 
Compton length. Hence ER/r should be somewhat larger than unity. One is 
at liberty to dump the generic baryon into a black hole, and recover for it the 
bound S <~ 2rrER/hc. But what is S here? It is not thermal entropy-the baryon 
is unexcited. So S must be exclusively "composition entropy"-the measure 
of the information required to single out one baryon species (one set of the 
relevant quantum numbers) from all permitted ones. S subsumes missing in- 
formation about baryon number, strangeness, hypercharge.. ,  of the baryon. It 
does not subsume charge and spin projection, because without even examining 
the baryon, one knows its charge and spin projection from measuring the charge 
and angular momentum of the hole before and after its assimilation of the 
baryon. Hence, S refers to the entropy associated with a generic baryon of 
definite charge q and spin projection Sz. 

Evidently S(q, Sz) = In lu Sz), where W is the number of permitted three- 
quark (antiquark) combinations corresponding to a baryon or antibaryon with 
the given q and Sz. As an example take q = +1, Sz = +�89 W(+I, +�89 can be com- 
puted by recalling that the three quarks or antiquarks must have different color 
quantum numbers. One assigns spins to the colors in all ways compatible with 
Sz = +�89 One then assigns flavor quantum number to each color while respecting 
the constraint q = +1. If the quarks can be selected out o fg  analogous genera- 
tions, there are W = 3 (g3 + 2g) distinct permitted combinations. Now we de- 
mand that In W <~ 2rrER/hc. For g = 3, 4, 5, 10, 20, 50 the left-hand side takes 
on values 4.60, 5.38, 6.00, 8.03, 10.1, t2.8. The bound in the right-hand side 
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should be somewhat larger than 2rr. Thus a few generations look all right. But 
many more than ten strain our credulity. Hence, the second law, via black holes, 
constrains the number of quark, lepton, and neutrino species that may exist. 

Communications theory is also enriched by like considerations. One of its 
central problems is to establish the maximum rate at which information may be 
transferred given certain constraints. With an eye on radio and telecommunica- 
tions, the constraint usually assumed is that the bandwidth is limited. There 
results the famous Shannon bound [9] on the rate of information transfer ~r. But 
with a more physical motivation one might like to set as constraint that the energy 
E of the "message" is fixed. One may then argue as follows. The message-a 
material system or a packet of radiation-must be subject to thermodynamics. 
Thus, if one can assign a radius to it, its maximum conceivable entropy Sm 
should obey S m < 2nER/hc. But S m also gives the maximum information 
that can be coded into the message by employing every one of its (quantum) 
states as a symbol [10]. Thus, the information I in bits borne by the message is 
I < 2~ER/(hc In 2). 

Now think of the message as spherical. It cannot travel faster than light; 
hence, it sweeps by a given point in time T >1 2R/c. Thus an appropriate receiver 
cannot acquire from it information at a rate higher than nE/h in 2 bits/sec. A 
more elaborate analysis allowing for general message geometry and for the 
Lorentz contraction supports this conclusion [11]. The rate of information 
acquisition i from any message of energy E cannot exceed nE/~ In 2 bits/sec 
(all quantities measured in frame of receiver). Thus, by combining a thermody- 
namic result suggested by black hole physics with causality restrictions, one gets 
an important rule in communication theory. This is particularly fitting since it 
was information considerations which very early suggested the concept of black- 
hole entropy [2]. 

The rule about ~? was foreshadowed in ideas of Bremermann [12], though his 
interpretation of it was quite different. The rule is fully consistent with Shan- 
non's bound, but of vastly wider applicability [11 ]. For example, combined 
with a minimum of information about atomic structure, it leads to the conclu- 
sion that an ideal digital computer cannot perform more than 10 is elementary 
arithmetical operations per second. 
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