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ABSTRACT

Biack holes have piqued much curiosity. But thus far they have
- been important only in "remote'" subjects like astrophysics and
quantum gravity. We show that the situation can be improved. By a
judicious application of black hole physics, one can obtain new
results in "everyday physics''. For example, black holes yield a
quantum uniﬁersal upper bound on the entropy-to-energy ratio for
ordinary thermdynamical systems which was unknown earlier. It can
be checked, albeit with much labor, by ordinary statistical methods,
‘Black holes set a limitation on the number of species of elementary
particles - quarks, leptons, neutrinos - which may exist. And black
holes lead to a fundamental limitation on the rate at which
infomation can be transferred for given message energy by any

communication system.
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The astrophysical roles of black holes are by now widely appreciated,

Their importance for understanding quantum gravity is also accepted,
Still, most would regard the black hole as a curiosity devoid of
relevance for everyday physics, After all, astrophysics is far from

the laboratory, and quantum gravity may never be testable experimentallyl
This view is unduly pessimistic, As I shall show, a judicious applicatioﬁ
of black hole theory can give new insights into everyday physics -

ordinary themmodynamics, particle physics, communication theory,

Black holes have suggested a new principle in statistical thermo-
dynamics: '"the entropy-to-energy ratio S/E of any system which can be
enclosed in a sphere of radius R cannot exceed 2nR/ﬁc"1 (we take k = 1).
To see why this is so, at least for systems with negligible self-
gravity, consider (for simplicity) a spherical system of radius R,
rest energy E, entropy S which we allow to be absorbed by a large black
hole, so large that Hawking's radiance contributes negligibly to the

entropy bookkeeping. In the process the entropy of the exterior world,

2,3
bh

1/4 AA/MA (units with G=c=1), where AA is the growth in event horizon

S e decreases by S; the black hole entropy S increases by

ex
area. Two distinct arguments set the lower bound AA 3 87ER if the
system;s self-gravity is negligible. One a_rgument2 ektends Christodoulou's
reasoning4 about reversible processes to the case wheﬁ the injected
particle has finite radius R. It shows that the quoted lower bound jis
attainable for "reversible'" injection orbits, The second argument5

obtains the same lower bound by integrating the Newman-Penrose
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equations for the growth in horizon area in response to the passage

of stress-energy. Thus Sbh > 27ER/fic (we restore c),

The generalized second law of thermodynamicsz’3 (whose success

in processes where Hawking's radiance plays a r-ol.e3 leaves little

‘doubt about its general validity) now requires that S g 2mER/Ac,

for otherwise Sext ¥ Spn could be made to decrease by injecting
the system in a '"reversible" orbit. Thus, arguments based on black

hole themodynamics (which wére already implicit in the early papers

on the subjectz’s) lead to the bound S/E g 2mR/hc for ggz;ordinary
spherical system with negligible self-gravity, This result in statistical
themodynamics is apparently new, That the bound on S/E is trivially
satisfied by systems of nonrelativistic particles was known early,S
The applicability of the bound to systems of massless quanta, i.e,,

radiation, is not so trivial to demonstrate directly, but this has

been done recently.

The most transparent demonstration is that of (‘::’Lb’bo'ns.f6 He
considered a quantum scalar field of definite enexgy E confined to 2
cavity of some shape. The entropy of the éygtem,he computed from
Boltzmann's fomula S = £n W in terms of the number W of many-
particle states with the given energy. Gibbons worked out S/E for
several cavity shapes, and showed that in every case S/E < 2mR/hc if
R is taken to be the radius of the sphere which circumscribes the
cavity. A more general, though more envolved approach is to compute S

and the mean energy E of a quantum field in a cavity from the density
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matrix. One includes in E the vacuum energy in order that E be the
gravitating enexrgy - this relates it directly to the E in our

gedanken experiment featuring the black hole. It has been possible to
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show™ that, for arbitrary container shape, and for an arbitrary admixture

“of scalar, electromagnetic and neutrino fields, S/E < 2mR/fic, where

R, again, is the radius of the circumscribing sphere. In a rather
different approach Wald, Sorkin and Jiu’ have shown that a self-
gravitating sphere of'radiation, which may be as close to its
Schwarzschild radius as allowed by the wave character of its contents,

also obeys S/E < 2wR/c,

The role played by black holes in bringing to light this new
principle in thermodynamics has been primary. The argument from black
holes ;uggested a well defined bound for S/E. The role of the
statistical arguments just descriﬁed'hds been to confimm, to clarify

the meaning of R, and to show that the boundis also valid for self-

gravitating systems.

The versatility of fhe bound is espegially highlighted when it
is applied to situation not ordinarily rggarded as within the province
of themmodynamics. For example, one can use it to gain some information
about the number of elementary building blocks of matter - quarks and
leptoqs. The present picture of particle physics is that mesons and
baryoﬁs are two or three quark composites, respectively, Quarks and
leptons are arranged in ''generations.'" The first generation contains

the eleétron, the e-neutrimo, two quarks with charges +2/3 and -1/3,
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respectively (two quark flavors), and all their antiparticles. Three
.such generations are known today, all exactly analogous in structure,
There ¢ould be more; in fact, there could be twenty, or fifty, and
particle physics would be saddled with hundreds of '"building blocks."
This depressing possibility may be ruled out by appealing again to

the bound S/E g 2mRMic. An early argument of this type dealing

with leptons is due to Mariwalla.8 Because it is hadrons, not leptons,
which are cdnposite, the bound is more credible.for hadrons, and it is

here applied to them.

The idea is to think of, say, a baryon as a cavity or '"bag"
containing three quarks. One is interested in the ground states of
such systems, namely, in all unexcited baryons. As a firét '
approximation one could neglect mass differences between the various
quark species, and regard all unexcited baryons as having the same
radius R. The generic baryon would thus be endowed with a definite
value for ER/fic. Since it is composite, the baryon should be larger
than its Compton length. Hence ER/fic shoudl be somewhat larger than
unity. One is at liberty to dump the generic baryon into a black hole,
and recover for it the bound S g.ZWER/ﬁc. But what is S here? It
is not themal entropy - the baryon is unexcited. So S must be
exclusively "composition entropy' - the measure of the information
required to single out one baryon species (one set.of the relevant
quantum numbers) froﬁ all permitted ones, S subsumes missing
infonnation about baryon number, strangeness, hypercharge ... of the

baryon. It does not subsume charge and spin projection,because without
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even examining the baryon, one knows its charge and spin projection
from measuring the charge and angular momentum of the hole before and

after its assimilation of the baryon, Hence, S refers to the entropy

- associated with a generic baryon of definite charge q and spin

. projection Sz'

Evidently S(q,Sz) = Ln W(q,Sz) where W is the number of
pemitted three-quark (antiquark) combinations corresponding to a
baryon or antibaryon with the given q and Sz' As an example
take 9 = +1, Sz-= +1/2. W(+1,+1/2) can be computed by recalling
that the three quarks or antiquarks must have different color quantum
numbers. One assigns spins to the colors in all ways compatible with
SZ = +1/2. One then assigns flavor quantum number to each color while
respeciing the constraint q = +1. If the quarks can be selected out
of g analogous genertions, there are W = 12g(3g2 - 6g + 4) distinct

permitted combinations. Now we demand that 4£n W g 27ER/fic. For

g=23,4,5, 10, 20, 50 the left hand side takes on values 6,15,

7.20, 7.99, 10.3, 12,5, 15.3. The bound in the right hand side should
be somewhat larger than 2n. Thus a few génerations look alright,

But ten or more strain our credulity. Hence, the second law, via
black ﬂoles, constrains the number of quark, lepton and neutrino

species that may exist.

Communications theory is also enriched by like considerations,
One of its central problems is to establish the maximum rate at which

information may be transferred given certain constraints, With an eye
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on radio and telecommunications, fhe constraint usually assumed is that
the bandwidth is limited, There results the famous Shannon bound9
on the rate of information transfer 1. But with a more physical
motivafion one might like to set as constraint thaf the energy  E of
the "message' is fixed. One may then argue as follows, The message -
a material system or a packet of radiation - must be subjecf to
thermodynamics. Thus, if one can assign a radius to it, it maximum
conceivable entropy %n should obey Sm < 2nERMic, But %n also
gives the maximum information that can be coded into the message by

0

employing every one of its (quantum) states as a symbol.1 Thus,

the information I in bits borne by the message is I < 27ER/HhcénZ .

Now think of the message as spherical, It cannot travel faster
than light; hence, it sweeps by a given point in time T 2 2R/c,
Thus an appropriate receiver cannét acquire froﬁ it information at a
rater higher than wE/ Afn?2 Bits/sec. A more elaborate analysis
~allowing for gencral message geometry and for the Lorent:z contraction
supports this conclusion.‘11 The rate of infommation acquisition i
fron any message of energy E cannot exceéa T1E/ fifn 2 bits/sec
(all qgantities measured in frame of receiver), Thus, by combining a
thermodynamic result suggested by black hole physics with causality
restrictions, one gets an impor£ant rule in communication theory.

This is particularly fitting since it was information considerations

which very early suggested the concept of black-hole entropy.2 o

/

The rule about I was foreshadowed in ideas of Bremermann,12

though his interpretation of it was quite different. The rule is fully
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consistent with Shannon's bound, but of vastly wider applicability.

For example, combined with a minimum of information about atomic

structure, it leads to the conclusion that an ideal digital computer
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" cannot perform more than 10"~ elementary arithmetical operations per

second.
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