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ABSTRACT

Entropy can disappear down a black hole, thus leading to
an apparent transcendence of the second law of thermodynamics.
Yet, black holes are known to exhibit a tendency to irreversibly
increase their areas, a phenomenon reminiscent of the second law.
We propose a generalized form of the second law, "common entropy
plus black-hole entropy never decreases", which is not transcended
when entropy goes down a black hole, and which shows the tendency
of the area to increase to be a consequence of the second law.

We aléo arrive a the expression for the entropy of a black hole.



BLACK HOLES AND THE SECOND LAW

The history of physics records many'suggegtions as to how the
second law of thermodynamics might be transcended. Undoubtedly,
the most famous of these is the ohe commonly called "Maxwell's
4demon". No satisfactory resolution of the paradox posed by
‘Maxwell's demon was available until Brillouin1 pointed out that
informafion must be reckoned as negative entropy. Only then did it
become clear that Maxwell's demon cannot transcend the second law
at any stage of its job. The importance of Brillouin's contribution
lies in his having recognized the necessity of generalizing the
concept of entropy to include information in order to forestall a
violation of the second law. |

Black hole physics apparently offers another way for transceh-
ding the second law. Drop some entropy into a black hole, thus
decreasing the entropy of the observable universe. One knows that
a black hole in equilibrium has only three degrees of freedom: Mass,
charge, and angular momentum.2 Thus an exterior observer cannot
possibly determine the entropy inside the black hole, and thus can=-
not verify that the increase of entropy inside the black hole com-
pensates for the decrease of entropy in the exterior world. It thus
appears that the second law is transcended in the same sense that
the law of conservation of baryon number is transcended in black
hole physics.3

Yet, it would be a mistake to consider the matter as closed.
After all, the second law is éssentially a statement that "natural

processes are generally irreversible."™ And nowhere is this state-

ment better exemplified than in black hole physics. For example,
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the capture of a particle by a black hole is an irreversible pro-

‘cess. Also, a theorem of Hawking? a special case of which was first

established by Christodoulou,s states that an increase in the area
of a black hole is always irreversible. Thus, changes of a black
hole are generally irreversible! We have here a striking paralle=-
lism between black hole physics and thermodynamics. What does it
signify? It is clear that the Hawking-Christodoulou theorem plays,
at least formally, the role of the second law for black holes. For-
mally, the area of a black hole is its entropy; it can never dec-
rease. Yet, if one believes in the unity of physics, one cannot
;ccept two second lawst One for thermodynamics, and one for black
hole physics. One would like to see the familiar second law and the
Hawking-Christodoulou theorem emerge as two aspects of a éingle
generalized second law. However, the apparent transcendence of

the second law which we mentioned earlier warns us that the gene-
ralized second law cannot be stated in terms of common entropy alone,
but must be stated in terms of a generalized entropy. Thus, ins-
pired by Brillouin's example, we shall seek a generalization of

the concept of entropy with the double purpose of saving the second
law from being transcended in black hole physics, and at the same
time exhibiting the Hawking-Christodoulou theorem as a consequence
of the (generalized) second law.

What is the generalized entropy? Our earlier discussion sug-
gests that the area of a black hole behaves somewhat as entropy.
Thus we expect the generalized entropy to be a sum of the commoﬁ
entropy in the black hole exterior plus some monotonically increa-
sing function of the black hole's area(the black-hole entropy). The

generalized second law will then reads Generalized entropy never



decreases. We shall now subject this proposed second law to a cri-
.tical test by reconsidering the problem of the disappearance of en-
tropy down a black hole. ~

Suppose that a container carrying some common entropy is sent
into a Kerr black hole of mass M and angular momentum -i « The
entropy will digappear from the observable world. At the same time
M and fi will increase by amounts equal to the energy and angular
momentum of the container, respectively. 1Is it possible to arrange
things in such a way that the changes in the black hole parameters
correspond to no increase in the area of the black hole? If this
;ere possible, then clearly the process here envisaged would trans-
cend not only the familiar second law (common entropy never decrea-
ses), but also the generalized second law (common entropy plus a
function of the black hole's area never decreases)! Is the above
process alowed? We owe to Christodoulouﬁthe analysis of the fall
of a particle into a Kerr black hole under the assumption that the
particle's orbit is a geodesic. He finds that in general the black
hole's area increases in the process. Only when E =Q Py where (L
is the rotational frequency of the black hole, and E and p¢ are
the energy and the component of angular momentum along the symmetry
axis of the particle, respectively, does the infall of the particle
cause no change in the area (reversible process). Christodoulou's
re?ersible process appears to supply us with a counterexample to
the generalized second law, for it permits the disappearance of
the entropy contained in the particle without implying a compensa-
ting irreversible change of the black hole! However, recent results
indicate that the assumption of geodesic motion of the particle is

not appropriate in the last stages of the infall, so that Christo-



doulou's conclusion must be reevaluated.

Davis, -Ruffini, and Tiomno6 have found that a particle of rest
mass m falling freely and radially into a Schwarzschild black
hole emits into the black hole gravitational waves whose energy is
proportional to m , and which can be digtinguished from the par-
ticle itself. The fact that the energy radiated is proportional
to m indicates that the change in the particle's energy E due to
radiation damping is non-negligible in the later stages of infall
even if m is very small. There is no reason to suppose that a'
similar phenomenon will not also occur for a particle falling into

7

a Kerr black hole along a géneral orbit. If we accept the propo-

sition that radiation damping causes the energy of the infalling

particle to vary by an amount of 0(m), then a simple argument7

shows that the particle can be captured by the black hole only if

its initial energy and angular momentum satisfy E =.ﬂ.p¢+10(m)|.

7

By Christodoulou's methods one can then show’' that the minimum pos-

sible increase in the area of the black hole A is

3

aA =7 A'm+ 0(m?)

. (1)
Here 'Ti is a dimensionless quantity which can depend only on
L/Mz, the only dimensionless parameter of the black hole. The 11
has a lower bound of order unity.

One may also consider a process in which the particle is
lowered into the black hole by a string. An analysis for the
7

Schwarzschild case’ shows that the minimum possible increase in
the area of the black hole is again given by (1) with a somewhat
different W& « What emerges from this discussion is that the black

hole compensates for the infall of the particle (which could



carry entropy) by irreversibly increasing its area by a non-neg-
ligible amount. This is just what we would expect from the gene-
ralized second law!

What is the expression for the entropy of a black hole? Coh-
sider a container of mass m being sent into a black hole of area
A . What is the maximum entropy that the container can carry? In
nature, black-body radiation is the thing with the largest entropy-
to-mass ratio}for given temperature T . This ratio 138 S/m = % T-l.
Imagine the container to be filled with black-body radiation of
temperature T and to have the least massive walls whiéh will sup-
port the radiation pressure. Its ovgrall entropy-to-mass ratio is7

S/m = 3T, p-1 : , (2)

where T, 1s a dimensionless constant which corrects for the
fact that the entropy-to-mass ratio of the walls is smaller than
that of the radiation (T, <1).

The container must go down the black holes thus, in the opti-
mum case, it can be no larger than T A% where T3 is a dimen-
sionless quantity which again can depend only on L/M2 (Té< 1).

It follows that the majority of the wavelengths of the radiation
3

in the container must be smaller than T _A<. Otherwise, the radia-

tion would not be in equilibrium and couid not have a well defined

temperature! Recalling that the characteristic wavelength asso-

ciéted with temperature T is X«h/xT (k is Boltzmann's cons-

tant), we see that the temperature of the radiation cannot be smaller
3

than ',g’ﬁ/k'l'3 A® o+ Thus the maximum entropy that the container can

carry is (see (2))

| %
Siax< tT2 Ty kA m/f . (3)

If we identify the corresponding increase in the black-hole
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entropy dSbh with Smax » we insure that the generalized second
law will hold for any process in which a package of entropy is

sent into the black hole. With tha aid of (1) we then have

as,, =% (7, T/T) KA /K . (3)

In order that Sbh depend only on A , and not on L and M
separately, we must assume that Y= %(Té 76/71) turns out to be
independent of L/MZ. Then the entropy of a black hole takes the

form (conventional units restored)

Sbh = (q k ng) A = 1.05x 1048'erg/ K - cm? M A ’ (4)

where LP = Cﬁ(k/cB)% is the Planck length 1.6« 10-33 cm.
Our argument suggests that the constant m is considerably smaller
than unity. The large value of the entropy Sb makes manifest the

h
highly irreversible character of gravitational collapse.
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