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Black H&it:;_s and the Second Law (°).
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Black-hole physics seems to provide at least two ways in which the second law of
thermodynamiecs may be transcended or violated:

a) Let an observer drop or lower a package of entropy into a black hole; the en-
tropy of the exterior world decreases. Furthermore, from an exterior observer’s point
of view a black hole in equilibrium has only three degrees of freedom: mass, charge and
angular momentum (%). Thus, once the black hole has settled down to equilibrium, there
is no way for the observer fto determine its interior entropy. Therefore, he cannot
exclude the possibility that the total entropy of the universe may have decreased in
the process. Tt is in this sense that the second law appears to be transcended (2).

b) A method for violating the second law has been proposed by GerocH (¥): By
means of a string one slowly lowers a body of rest mass m and nonzero temperature
toward a Schwarzschild black hole of mass M. By the time the body nears the horizon,
its energy as measured from infinity, B = m(l — 2M/r)}, is nearly zero; the body has
already done work m on the agent which lowers the string. At this point the body is
allowed to radiate into the black hole until its rest mass is m — Am. Finally, by ex-
pending work m — Am, one hauls the body back up.

The net result: a quantity of heat Am has been completely converted into work.
Furthermore, since the addition of the radiation to the black hole takes place at a
point where (I —2M/r)¥ ~ 0, the mass of the black hole is unchanged. Thus the black
hole appears to be unchanged after the process. This implies a violation of the second
law: « One may not transform heat entirely into work without compensating changes
taking place in the surroundings. »

In this note we formulate the second law in a form suitable for black-hole physics
which resolves the transcendence problem. We also indicate why Geroch’s gedanken
experiment does not, in fact, violate the second law.
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738 J. D. BERKENSTEIN

We state the second law as follows: « Common entropy plus black-hole entropy
never decreases.» By common entropy we mean entropy in the black-hole’s exterior.
By black-hole entropy S,y We mean

(1) Sh,h. = T?JFL;SA .

where A is the area of the black hole (*) in question, Lp is the Planck length
(BG[c3)t = 1.6-10-% cm, k i8 Boltzmann’s constant 1.38-10- erg/°K and 7 is a constant
number of order unity.

The introducti}ﬂ of a black-hole entropy is necessitated by our first example. Without
it the second law is definitely transcended. With black-hole entropy the second law
becomes a well-defined statement susceptible to verification by an exterior observer.
The choice of the area of a black hole as a measure of its entropy is motivated by the
results of CHRISTODOULOU (%) and of HAwkING (°) that the area of a black hole never
decreases, and that it increases for all but a very special class of black-hole transfer-
mations (5). The area of a black hole appears to be the only one of its properties having
this entropylike behavior which is s0 essential if the second law as we have stated it
is to hold when entropy goes down a black hole.

By choosing Sy . proportional to 4 rather than to some monotonically increasing func-
tion of A, we ensure that the total black-hole entropy of a system of black holés (the
sum of individual 8, ) depends only on the total horizon area—also a nondecreasing
quantity which is of fundamental importance in Hawking’s work (%).

The introduction of k and of a length squared in (1) is necessitated by dimensional
considerations. We choose Planck’s length because it is the only truly universal constant
with units of length. (We shall show later on that no larger scale of length will do.)
Although a black hole is a thoroughly classical entity, black-hole entropy contains %
because it relates to the interaction of a black hole with material systems. It is well
known that the expression for entropy of any material system always contains #i; thus,
the appearance of % in Sy y, i8 understandable. (In what follows we use units with
@ =¢=1; thus Ly =4.)

Let us illustrate the operation of the second law with a simple example. Consider
the case of a narrow beam of black-body radiation of temperature T which is directed
into a black hole of mass M. We are clearly assuming that geometrical optics is appli-
cable. Thus, the characteristic wavelengths of the radiation must be much smaller
than M. This implies that

(2) T kM .
We note also that, to a given energy E in the beam, there corresponds entropy (7) 8, where
(3) §=E/T.

The increase in area of the black hole (%) caused by the infall of radiation with
energy B may be calculated from the conservation of energy and angular momentum.

(¢) The area of & (Kerr-Newman) black hole of mass I, charge @ and angular momentum L is
A = g {[M + (M* — Q* — L} M*3)* + L*|M*). An extreme Kerr black hole has L = M* and Q= 0.

(¥) D. CERISTODOULOU: Phys. Rev. Leit., 25, 1596 (1870); D. CERISTODOTLOT and R. RUFFINT: Phys.
Rev. D, 4, 8552 (1871).

(5) 8. W. BEAWKING! Phys. Rev. Leil., 26, 1344 (1971); Comm. Maih. Phys., 25, 152 (1972).

() A black-body cavity emits entropy E/T as it emiis emergy E; the propagstion of the beam isa
reversible Drocess.
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BLACK HOLES AND THE SECOND LAW 73¢9

(One neglects gravitational radiation losses since they are of O(E?/M).) This increase
is minimized when the Dblack hole is extreme Kerr, and when the beam of radiation
travels in the equatorial plane, and adds to the black hole as much angular momentum
as is consistent with the requirement that it be captured by the black hoele (%), The

inerease is (%)

(4) (A4)pye = 8(2 —8F) ME .

The corresponding minimum possible increase in 8, is
P g P b.h.

"
1

(5) : (A8, 4 Ymta = 87(2 — 3%) 7k ME/A .

On the other hand, according to (2) and (3) the corresponding decrease of common
entropy is
t
(6) |AS| < EME[A .

Thus, provided 7 is of-order unity, the overall entropy (common entropy plus 8y, )
always increases for all M. It should be clear that the length L, appearing in (I) cannot
be chosen much larger than #? if the second law is to hold in all eases.

At first sight it would appear that the second law will break down if T<7i/kM.
However, in this regime one cannot continue treating the radiation by geometrical
optics, but must treat it by wave theory. If this is done, one finds (8) that statistical
fluctuations in the radiation are all important, and thus the second law is irrelevant
in the first place. Thus, for this gedanken experiment the second law as here formulated
holds whenever fiuctuations are unimportant.

CzrisToULoU (%) has described a process by means of which a particle can be added
%o a black hole without there resulting an increase in the black hole’s area. One could
imagine that the particle in gquestion carries entropy. It would then appear that thia
entropy goes down the black hole without there being a compensating increase in S,
as demanded by the second law.

In Cristodounlou’s process the particle in question must be created at the black hole’s
horizon by the fission of a primary particle (the other fission product escaping to in-
finity)., It follows that the primary particle is required to fall from far away to the
horizon. Recent results (°) indicate that in such a fall the particle will radiate into the
black hole gravitational waves with energy of the order of its rest mass. One can
show (81%) that this radiation will always cause a nonnegligible increase in the black
hole’s area corresponding to the increase in 8, , demanded by the second law. In this
manner one reconciles Christodoulou’s process with the second law.

Let us now try to resolve the difficulty raised by Geroch’s gedanken experiment.
The key assumption made which leads to confliet with the second law is that one can
caleulate the work done by (on) the body by taking differences of its « potential energy »
m(1 — 20[/r}¥ at two different points. Such a procedure assumes the process of lowering
(raising) the body to be of a conservative or reversible character. However, the tend-
ency of a black hole’s area to increase irreversibly at the slightest provocation (¢)
warns us that there may be an element of irreversibility in the problem.

(*) J. D. BEEENSTEIN: to be published.
(") M. Davis, R. RUFFINT and J. TroMyo: Phys, Bev. D, to be publiched (1072).

(*} J. D. BeEsmweTEiw: Ph. D, Thesis, Princeton Uriversity (1872) (orpubliched).
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Indeed, some caleulations based on the metric for a Schwarzschild black hole placed
in an exterior quadrupole gravitational field (1), coupled with simple physical ar-
guments, suggest that the black hole in question is deformed, and its area increases all
along as the bedy is lowered by the string (°%%). This increase in area is irreversible.
Thus, when the body is hauled back up, the black hole returns to an undeformed
Yehwarzschild configuration of larger area (and hence larger mass) than the initial one.
Therefore, the work expended to raise the body must be larger than the one calculated
from the potential method; the work done by the body is less than Am. This means
that the heat Am is, at best, only partially converted into work. No viclation of the

ﬁsecond law is entailed here. One should also notice that the ¢ surroundings », t.e.
“the black hole, are changed in the overall process.

Further details on the above examples, other examples and implications of the
second law for black-hole physics will be reported elsewhere.

We conclude on a speculative note. One sees from (1) that the natural unit of area
of a black hole is the Planck length squared. One cannot help wondering about the
possible connection between this feature and the expected quantum structure of space-
time at a scale of the order of the Planck length (*%).
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(**) Yi. B. ZeL'novicm and I. D. NOVIEOV: Stars and Relativily (Chicago, 1972), p. 138.
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C. DEWITT (New York, 1965).



