Share

Nuclear Power in the World Today

(Updated January 2014)

  • The first commercial nuclear power stations started operation in the 1950s.
  • There are over 430 commercial nuclear power reactors operable in 31 countries, with over 370,000 MWe of total capacity. About 70 more reactors are under construction.
  • They provide over 11% of the world's electricity as continuous, reliable base-load power, without carbon dioxide emissions.
  • 56 countries operate a total of about 240 research reactors and a further 180 nuclear reactors power some 150 ships and submarines.

Nuclear technology uses the energy released by splitting the atoms of certain elements. It was first developed in the 1940s, and during the Second World War research initially focussed on producing bombs by splitting the atoms of particular isotopes of either uranium or plutonium.

In the 1950s attention turned to the peaceful purposes of nuclear fission, notably for power generation. Today, the world produces as much electricity from nuclear energy as it did from all sources combined in 1960. Civil nuclear power can now boast over 15,500 reactor years of experience and supplies almost 11.5% of global electricity needs, from reactors in 31 countries. In fact, through regional grids, many more than those countries use nuclear-generated power.

Many countries have also built research reactors to provide a source of neutron beams for scientific research and the production of medical and industrial isotopes.

Today, only eight countries are known to have a nuclear weapons capability. By contrast, 56 operate about 240 civil research reactors, over one thrid of these in developing countries. Now 31 countries host over 430 commercial nuclear power reactors with a total installed capacity of over 370,000 MWe (see linked table for up to date figures). This is more than three times the total generating capacity of France or Germany from all sources. About 70 further nuclear power reactors are under construction, equivalent to 20% of existing capacity, while over 160 are firmly planned, equivalent to half of present capacity.

Nuclear Electricity Production

Sixteen countries depend on nuclear power for at least a quarter of their electricity. France gets around three quarters of its power from nuclear energy, while Belgium, Czech Republic, Hungary, Slovakia, Sweden, Switzerland, Slovenia and Ukraine get one third or more. South Korea, Bulgaria and Finland normally get more than 30% of their power from nuclear energy, while in the USA, UK, Spain and Russia almost one fifth is from nuclear. Japan is used to relying on nuclear power for more than one quarter of its electricity and is expected to return to that level. Among countries which do not host nuclear power plants, Italy and Denmark get almost 10% of their power from nuclear.

Fuel for Electricity Generation

Improved performance from existing nuclear reactors

As nuclear power plant construction returns to the levels reached during the 1970s and 1980s, those plants now operating are producing more electricity. In 2011, production was 2518 billion kWh. The increase over the six years to 2006 (210 TWh) was equal to the output from 30 large new nuclear power plants. Yet between 2000 and 2006 there was no net increase in reactor numbers (and only 15 GWe in capacity). The rest of the improvement is due to better performance from existing units.

In a longer perspective, from 1990 to 2010, world capacity rose by 57 GWe (17.75%, due both to net addition of new plants and uprating some established ones) and electricity production rose 755 billion kWh (40%). The relative contributions to this increase were: new construction 36%, uprating 7% and availability increase 57%. In 2011 and 2012 both capacity and output diminished due to cutbacks in Germany and Japan following the Fukushima accident.

Considering 400 power reactors over 150 MWe for which data are available: over 1980 to 2000 world median capacity factor increased from 68% to 86%, and since then it has maintained around 85%. Actual load factors are slightly lower: 80% average in 2012 (excluding Japan), due to reactors being operated below their full capacity for various reasons. One quarter of the world's reactors have load factors of more than 90%, and nearly two thirds do better than 75%, compared with about a quarter of them over 75% in 1990. The USA now dominates the top 25 positions, followed by South Korea, but six other countries are also represented there. Four of the top ten reactors for lifetime load factors are South Korean.

US nuclear power plant performance has shown a steady improvement over the past twenty years, and the average load factor in 2012 was 81%, up from 66% in 1990 and 56% in 1980. This places the USA as the performance leader with nearly half of the top 50 reactors, the 50th achieving more than 94% in 2012. The USA accounts for nearly one third of the world's nuclear electricity.

In 2012, ten countries with four or more units averaged better than 80% load factor, while French reactors averaged 73.6%, despite many being run in load-following mode, rather than purely for base-load power.

Some of these figures suggest near-maximum utilisation, given that most reactors have to shut down every 18-24 months for fuel change and routine maintenance. In the USA this used to take over 100 days on average but in the last decade it has averaged about 40 days. Another performance measure is unplanned capability loss, which in the USA has for the last few years been below 2%.

World Electricity Production 2008

World overview

All parts of the world are involved in nuclear power development, and a few examples follow.

China

The Chinese government plans to increase nuclear generating capacity to 58 GWe with 30 GWe more under construction by 2020. China has completed construction and commenced operation of 17 new nuclear power reactors over 2002-13, and some 30 new reactors are either under construction or likely to be so by the end of 2014. These include the world's first four Westinghouse AP1000 units and a demonstration high-temperature gas-cooled reactor plant. Many more are planned, with construction due to start within about three years. China is commencing export marketing of a largely indigenous reactor design. R&D on nuclear reactor technology in China is second to none.

India

India’s target is to have 14.5 GWe nuclear capacity on line by 2020 as part of its national energy policy. These reactors include light- and heavy water reactors as well as fast reactors. Seven power reactors are under construction or almost so, of both indigenous and foreign design, and including a 500 MWe prototype fast breeder reactor. This will take India's ambitious thorium programme to stage 2, and set the scene for eventual utilization of the country's abundant thorium to fuel reactors.

Russia

Russia plans to increase its nuclear capacity to 30.5 GWe by 2020, using its world-class light water reactors. Construction of a large fast breeder unit is nearly complete, and development proceeds on others, aiming for significant exports. An initial floating power plant is under construction, with delivery due in 2016. Russia is active in building and financing new nuclear power plants in several countries.

Europe

Finland and France are both expanding their fleets of nuclear power plants with the 1650 MWe EPR from Areva, two of which are also being built in China. Several countries in Eastern Europe are currently constructing or have firm plans to build new nuclear power plants (Bulgaria, Czech Republic, Hungary, Romania, Slovakia, Slovenia and Turkey).

A UK government energy paper in mid-2006 endorsed the replacement of the country’s ageing fleet of nuclear reactors with new nuclear build, and four 1600 MWe French units are planned for operation by 2023. The government aims to have 16 GWe of new nuclear capacity operating by 2030.

Sweden has abandoned its plans to prematurely decommission its nuclear power, and is now investing heavily in life extensions and uprates. Hungary, Slovakia and Spain are all implementing or planning for life extensions on existing plants. Germany agreed to extend the operating lives of its nuclear plants, reversing an earlier intention to shut them down, but has again reversed policy following the Fukushima accident.

Poland is developing a nuclear program, with 6000 MWe planned. Estonia and Latvia are involved in a joint project with established nuclear power producer Lithuania. Belarus has started construction of its first Russian reactor, and a second is due to follow.

United States

In the USA, there are five reactors under construction, four of them new AP1000 designs. One of the reasons for the hiatus in new build in the USA to date has been the extremely successful evolution in maintenance strategies. Over the last 15 years, changes have increased utilization of US nuclear power plants, with the increased output corresponding to 19 new 1000 MW plants being built.

South America

Argentina and Brazil both have commercial nuclear reactors generating electricity, and additional reactors are under construction. Chile has a research reactor in operation and has the infrastructure and intention to build commercial reactors.

South Korea

South Korea has plans or placed orders for 12 new nuclear power reactors. It is also involved in intense research on future reactor designs.

SE Asia

Vietnam intends to have it first nuclear power plant operating about 2023 with Russian help and a second soon after with Japanese input. Indonesia and Thailand are planning nuclear power programs.

South Asia

Bangladesh has approved a Russian proposal to build its first nuclear power plant. Pakistan with Chinese help is building three small reactors and preparing to build two large ones near Karachi.

Central Asia

Kazakhstan with its abundance of uranium is working closely with Russia in planning development of small new reactors for its own use and export.

Middle East

The United Arab Emirates is building the first two of four 1450 MWe South Korean reactors at a cost of over $20 billion and is collaborating closely with IAEA and experienced international firms. Iran’s first power reactor is in operation, and more are planned.

Saudi Arabia, Jordan and Egypt are also moving towards employing nuclear energy for power and desalination.

Africa

South Africa is committed to plans for further conventional nuclear power reactors.

Nigeria has sought the support of the International Atomic Energy Agency to develop plans for two 1000 MWe reactors.

New countries

In September 2012 the International Atomic Energy Agency (IAEA) expected seven newcomer countries to launch nuclear programs in the near term. It did not name these, but Lithuania, UAE, Turkey, Belarus, Vietnam, Poland, and Bangladesh appear likely candidates. Others had stepped back from commitment, needed more time to set up infrastructure, or did not have credible finance.

See also WNA paper Emerging Nuclear Energy Countries.

Other nuclear reactors

In addition to commercial nuclear power plants, there are about 240 research reactors operating, in 56 countries, with more under construction. These have many uses including research and the production of medical and industrial isotopes, as well as for training.

The use of reactors for marine propulsion is mostly confined to the major navies where it has played an important role for five decades, providing power for submarines and large surface vessels. About 150 ships are propelled by some 180 nuclear reactors and over 13,000 reactor-years of experience has been gained with marine reactors. Russia and the USA have decommissioned many of their nuclear submarines from the Cold War era.

Russia also operates a fleet of six large nuclear-powered icebreakers and a 62,000 tonne cargo ship which are more civil than military. It is also completing a floating nuclear power plant with two 40 MWe reactors for use in remote regions.

Nuclear Electricity Generation
Note: Taipower uses nuclear energy to generate 22% of electricity on the island of Taiwan.

See table of the World's Nuclear Power Reactors with full listing of countries, which complements this paper.

 

Sources:
WNA, data to publication date.
IAEA.
Nuclear Engineering International, May 2013 (load factors)