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The uncertainty principle formulated by Heisenberg in 1927 describes a trade-off between the error of a
measurement of one observable and the disturbance caused on another complementary observable such that
their product should be no less than the limit set by Planck’s constant. However, Ozawa in 1988 showed a
model of position measurement that breaks Heisenberg’s relation and in 2003 revealed an alternative
relation for error and disturbance to be proven universally valid. Here, we report an experimental test of
Ozawa’s relation for a single-photon polarization qubit, exploiting a more general class of quantum
measurements than the class of projective measurements. The test is carried out by linear optical devices and
realizes an indirect measurement model that breaks Heisenberg’s relation throughout the range of our
experimental parameter and yet validates Ozawa’s relation.

T
he uncertainty principle formulated by Heisenberg in 19271 can be stated as: Any measurement of the
position Q of a particle with the error Qð Þ causes the disturbance g(P) on its momentum P satisfying

Qð Þg Pð Þ§
2
: ð1Þ

It should be emphasized that Heisenberg1 not only derived this relation from the famous c-ray microscope
thought experiment, but he also gave a mathematical justification1, in which he used the relation

s Qð Þs Pð Þ§
2

ð2Þ

for the standard deviations s(Q), s(P) of the position Q and the momentum P, defined, for instance, by s(Q)2 5

ÆQ2æ 2 ÆQæ2, where Æ???æ stands for the mean value in a given state.
Heisenberg1 indeed proved Eq. (2) for Gaussian wave functions, and subsequently Kennard2 proved it for

general wave functions. Later, Eq. (2) has often been explained as the formal expression of Heisenberg’s relation
(1)3–6. However, Eq. (2) does not conclude the limitation of measurement as stated by Eq. (1), since Heisenberg’s
argument to derive Eq. (1) from Eq. (2) uses additional assumptions, which the prevailing view has ignored.

Heisenberg’s argument has been reconstructed in the modern language as follows7,8. Heisenberg assumes that
(H1) the measurement with the error Qð Þ collapses the wave function so that the post-measurement standard
deviation s(Q) is no more than Qð Þ, i.e., Qð Þ$ s(Q), and that (H2) the error Qð Þ and the disturbance g(P) do
not depend on the pre-measurement state. Under assumption (H2), we can assume without loss of generality that
the pre-measurement momentum is so small that all the post-measurement momentum is caused by the mea-
surement, i.e., g(P) 5 ÆP2æ1/2 $ s(P), where Æ???æ stands for the post-measurement mean value. Then, he uses Eq.
(2) to conclude Eq. (1).

In 1929, Robertson9 generalized Eq. (2) to an arbitrary pair of observables A, B in the form

s Að Þs Bð Þ§ 1
2

A, B½ �h ij j, ð3Þ

where [A, B] 5 AB 2 BA. Accordingly, the generalized form of Heisenberg’s relation

Að Þg Bð Þ§ 1
2

A, B½ �h ij j ð4Þ
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has been accepted to hold for the error Að Þ of any A-measurement
and the disturbance g(B) caused by that measurement on an observ-
able B, whereas the relation has been proven only in limited circum-
stances10–13. Note that Eq. (4) is derived from Eq. (3) under certain
assumptions10–13, as Heisenberg assumed (H1) and (H2) to derive Eq.
(1) from Eq. (2). Thus, Eq. (4) would not be universally valid, under
conditions out of the assumptions. Nevertheless, Eq. (4) is often
regarded as the generalized form of Heisenberg’s original claim,
Eq. (1), and we hereafter refer to Eq. (4) as Heisenberg’s uncertainty
relation.

In 1980, Braginsky, Vorontsov, and Thorne14 claimed that the
uncertainty principle (1) leads to a sensitivity limit, called the
standard quantum limit, for gravitational wave detectors using
the monitoring of free mass position such as interferometer type
detectors. However, following Yuen’s15 proposal of exploiting
‘‘contractive states,’’ Ozawa16–19 in 1988 showed a solvable model
of an error-free position measurement that breaks both the stand-
ard quantum limit and the uncertainty principle (1). In a double-
slit experiment, it has also been claimed that one can perform a
which-way measurement of a particle without disturbing its
momentum20,21. Nowadays, the so-called Heisenberg limit, (1) or
(4), is taken in theory to be rather a breakable limit22, but then we
should ask: What is the unbreakable limit, which Heisenberg might
have originally intended? Also, is the Heisenberg limit really break-
able in experiment?

In 2003, Ozawa13 proposed an alternative relation for error and
disturbance that he theoretically proved to be universally valid: Any
measurement of an observable A in a state jyæ with the error Að Þ
causes the disturbance g(B) on another observable B satisfying

Að Þg Bð Þz Að Þs Bð Þzs Að Þg Bð Þ§ 1
2

A, B½ �h ij j, ð5Þ

where s(A) and s(B) stand for the standard deviations in the state
jyæ. Ozawa’s relation has two additional correlation terms, the pres-
ence of which allows the error-disturbance product Að Þg Bð Þ to be
much below the lower bound of Eq. (4). An experimental demon-
stration of Ozawa’s relation has been proposed by Lund and
Wiseman23, exploiting the ‘‘weak-measurement technique’’ used
for measuring momentum transfer in Ref. 21. Recently, Erhart et
al. have experimentally demonstrated Ozawa’s relation in neutron
spin measurements24, using the ‘‘three-state method’’ for measuring
error and disturbance proposed in Ref. 25.

In this paper, we report an experimental test of Ozawa’s relation
using the ‘‘three-state method’’ for a single-photon polarization
qubit carried out by linear optical devices. Our test realizes an
indirect measurement model, a standard model of measuring pro-
cess, that validates Ozawa’s relation and breaks Heisenberg’s rela-
tion throughout the range of our experimental parameter, the
‘‘measurement strength’’ defined below. In the previous attempt24,
the projective measurement of a spin component is implemented
by a pair of projective operations, each of which is carried out in
an independent experimental set-up by a spin-analyser, which
passes the measured object for only one fixed outcome (11 or
21) of measurement. This is unlike any indirect measurement
model, in which the apparatus always passes the measured object
for two possible outcomes (11 and 21) in a single experimental
set-up. Moreover, our measurements are of a more general class of
quantum measurements than the class of projective measure-
ments, which were tested previously24.

Results
Indirect measurement model. For the general indirect measure-
ment model depicted in Fig. 1, the error Að Þ and the disturbance
g(B) are defined by19

Að Þ~ U{ I6Mð ÞU{A6I
� �2
D E1=2

,

g Bð Þ~ U{ B6Ið ÞU{B6I
� �2
D E1=2

,

ð6Þ

where the average is taken over the system-probe composite state on
input (See Supplementary Information). The error Að Þ is the root-
mean-square of the difference between the meter observable M after
the interaction and the observable A before the interaction. The
disturbance g(B) is the root-mean-square of the change in the ob-
servable B during the measuring interaction. Note that these defi-
nitions of error and disturbance are generalizations of their classical
definitions. Indeed, when U{(I fl M)U (or U{(B fl I)U) commutes
with A fl I (B fl I), the definitions of Að Þ g Bð Þð Þ becomes identical
to the classical root-mean-square error (disturbance).

In our experiment, both the system and the probe are qubits, called
the signal qubit and the probe qubit. Let X, Y, and Z be the Pauli
matrices; j0æ and j1æ denote the eigenstates of Z with eigenvalues 11
and 21, respectively. The measurement is carried out by an inter-
action U between the signal qubit and the probe qubit initialized in
the state jjæ 5 j09æ; we use the prime symbol for probe observables
and probe states, when a distinction is necessary. We take the meter
observable M in the probe as M 5 Z9. The measurement operators
Mm 5 Æm9jUj09æ with m 5 0, 1 describe the measurement as

U yj i6 0’j ið Þ~M0 yj i6 0’j izM1 yj i6 1’j i: ð7Þ

In this paper, we employ a general form of measurement given as

M0~ cos h 0j i 0h jz sin h 1j i 1h j,

M1~ sin h 0j i 0h jz cos h 1j i 1h j,
ð8Þ

where 0 # h # p/4 (See Supplementary Information). The measure-
ment strength s of this measurement is quantified by s 5 cos 2h 5

cos2h 2 sin2h, varying from unity at the full-strength measurement
(h 5 0) to zero at the weakest measurement (h 5 p/4). The positive
operator valued measure (POVM) elements corresponding to the
outcomes l0 5 1, l1 5 21 are

P 0~M{
0 M0~

I
2
z

s
2

Z,

P 1~M{
1 M1~

I
2
{

s
2

Z:

ð9Þ

A theoretically simple procedure (quantum circuit) to realize the
generalized measurement given in (7) and (8) is shown in Fig. 2
(a). In our experiment, as described later, to realize this measurement
we employ a different procedure shown in Fig. 2 (b) that is optically

B B-measurement 

U
A-measurement 

Signal 

ξ

Probe 

M 

Apparatus

Figure 1 | Indirect measurement model for A-measurement with
detection of B-disturbance. The probe initialized in the state | jæ is

introduced in the apparatus to make an indirect measurement of an

observable A in the state | yæ by interacting with the system through a

unitary U. The meter observable M in the probe is precisely measured after

the interaction to obtain the measurement outcome, which is used for

estimating the error e Að Þ. Another observable B is also precisely measured

after the interaction to obtain the data for estimating the disturbance g(B).
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implemented as in Fig. 3. Note that both circuits provide the same
measurement operators defined in (7) and (8) for the probe input
state j09æ, although the explicit interactions are different (See Supple-
mentary Information). This optical implementation was previously
introduced by Baek, Cheong, and Kim26. The same measurement was
proposed by Lund and Wiseman23 for testing Ozawa’s relation using
the ‘‘weak-measurement technique.’’

Error and disturbance of the experimental model. We take the sig-
nal observable to be measured as A 5 Z and consider the disturbance
in the signal observable B 5 X. From Eq. (6), the measurement error
and the disturbance for this model are calculated as

Zð Þ~2 sin h, g Xð Þ~2 sin
p

4
{h

� �
: ð10Þ

An equivalent result was given in Ref. 23. For this particular
measuring apparatus, both the error and the disturbance are
independent of the input state jyæ.

To compare Ozawa’s relation with Heisenberg’s relation, we
choose the input signal state as an eigenstate of Y since it gives the
maximum value of C(Z, X) ; jÆyj[Z, X]jyæj/2 5 jÆyjYjyæj5 1, and is
thus the most stringent test for these relations. For this input state the
standard deviations are s(X) 5 1 and s(Z) 5 1. Heisenberg’s error-
disturbance product and Ozawa’s quantity are

H hð Þ: Zð Þg Xð Þ

~4 sin h sin
p

4
{h

� �
,

ð11Þ

O hð Þ: Zð Þg Xð Þz Zð Þs Xð Þzs Zð Þg Xð Þ

~ 2 sin hz1ð Þ 2 sin
p

4
{h

� �
z1

� �
{1:

ð12Þ

Then, we have 0ƒH hð Þƒ2{
ffiffiffi
2
p

ƒ1 and
ffiffiffi
2
p

ƒO hð Þ for 0 # h #

p/4. Thus, Ozawa’s relation (5) always holds, while Heisenberg’s
relation (4) fails for all measurement strengths. Detailed materials
are available as Supplementary Information.

The violation of Heisenberg’s relation in this model has been in
part anticipated from a previous analysis27, in which we found that
the projective measurement, which corresponds to the case where s
5 1, or h 5 0, of a spin component violates Heisenberg’s relation,
since the error should be zero but the disturbance should be at most
two. Thus, if the measurement strength s varies continuously from s
5 1, it can be expected from the continuity of the error and the
disturbance that Heisenberg’s relation would be violated in some
interval of the measurement strength including s 5 1. In the present
experiment, it also happens that the product would be zero at the
opposite end, where s 5 0, since the disturbance should be zero but
the error should be at most two. The product is eventually below
Heisenberg’s limit for all values of s.

Experimental test of error-disturbance relation. We study the
error-disturbance relation for the measurement of a photon
polarization qubit; horizontal and vertical polarizations are chosen
as the eigenstates j0æ and j1æ of Z, respectively, and 645u
polarizations correspond to the eigenstates j0Xæ and j1Xæ of X. Our
experimental scheme is shown in Fig. 3, which realizes the quantum
circuit in Fig. 2 (b) (See Methods).

The experimentally measured error and disturbance quantities are
shown in Fig. 4. Solid circles denote the measurement error (a) and
disturbance (b) as functions of measurement strength. We clearly see
that as the measurement strength increases, the measurement error
of the observable Z decreases, while the disturbance of the observable
X increases. The dashed lines show the theoretically calculated error
and disturbance for the ideal generalized measurements, which are

W ( )

(a) (b)

W ( ) W +
2

PBS
0 0

HWP HWP PBS HWP

cos 0 + sin 1in 1

Figure 2 | Quantum circuit realization of the indirect measurement
model to be tested. A theoretically simple circuit (a) and the circuit used in

our experiment (b), where W hð Þ: cos h sin h
sin h {cos h

� �
. PBS and HWP in

(b) stand for polarization beamsplitters and half-wave plates in Fig. 3,

respectively.

Figure 3 | Experimental setup to test the error-disturbance relation. ND (neutral density filter), Pol. (vertical polarizer), and WP (wave plates) prepare

the initial polarization qubit | yæ. Pol. or HWP is inserted to prepare Z | yæ, (Z 1 I) | yæ, X | yæ, and (X 1 I) | yæ. VBS(t,r) is realized by using a pair of HWPs

and a PBS. A HWP at an angle of 22.5u and a PBS are used to carry out the projective measurement of X.

www.nature.com/scientificreports
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defined in Eqs. (7) and (8). It is found that the error and the disturb-
ance quantities are affected by the imperfect extinction ratio, i.e., the
polarization contrast, of the polarization beamsplitters (PBSs) used
in the measurement (see Supplementary Information). The experi-
mentally measured error and disturbance closely follow the theoret-
ically calculated error and disturbance after the PBS extinction ratio
is taken into account (solid lines).

From the experimentally measured error and disturbance, we
evaluate Ozawa’s quantity (solid circles) and Heisenberg’s quantity
(solid squares) in Fig. 4(c). The upper and lower solid lines are the
corresponding theoretical plots after the non-ideal PBS extinction
ratio is taken into account. The dashed and dotted lines are theor-
etical plots for an ideal PBS. The same curves were given in Fig. 3 in
Ref. 23. As shown in Eq. (4) and Eq. (5), both relations have the same

lower bound C(Z, X) 5 1 (middle solid line). The data clearly dem-
onstrate that Ozawa’s relation always holds, whereas Heisenberg’s
relation fails for all measurement strengths.

Discussion
In this paper, we have proposed and demonstrated a method for
experimentally testing Ozawa’s universally valid reformulation of
Heisenberg’s trade-off relation of the error and the disturbance in
photon polarization measurements. Based on generalized quantum
measurements of the single-photon polarization qubit, we demon-
strated an interesting case where Ozawa’s relation always holds but
Heisenberg’s relation always fails.

Following to Ozawa’s works8,16–19, other approaches to the trade-
off relations between the error and the disturbance have been stimu-
lated28–33. Some of those proposed the use of state-independent mea-
sures of error and disturbance28–31. Although such state-independent
measures would be useful in some cases, state-dependent measures
such in Eq. (6) are still valuable, as Kennrard and Robertson’s for-
mulae, Eq. (2) and Eq. (3), are indeed state-dependent. We also note
the case of ‘‘unbiased measurements’’, i.e.,

U{ I6Mð ÞU
	 


{ A6Ih i~0,

U{ B6Ið ÞU
	 


{ B6Ih i~0,
ð13Þ

which are sometimes assumed when the trade-off relations between
the error and the disturbance are dealt with. Actually, this condition
is included in the assumptions necessary to derive Eq. (4) from Eq.
(3)10–13. Thus, if one assumes the unbiased measurements, it is quite
natural that Heisenberg’s relation holds. On the contrary, Ozawa’s
approach does not require such assumptions and thus Ozawa’s rela-
tion is universally valid even in circumstances out of such assump-
tions. In our experiments, which are indeed out of such assumptions
because the measurements used are not unbiased, Heisenberg’s rela-
tion is violated yet Ozawa’s relation holds.

A correct understanding and experimental confirmation of a fun-
damental limitation of measurements will not only foster insight into
foundational problems but also advance the precision measurement
technology in quantum information processing. We have confirmed
that the ‘‘three-state-method’’ successfully determines the error and
the disturbance of the photonic measuring apparatus. This opens a
way to a new technology for treating the error and the disturbance as
measurable quantities in prospect for applications to secure quantum
communication. The new universal limit of measurements that we
have confirmed will give an ultimate limit for quantum metrology, in
which it is now more important to know the unbreakable limit than
to break the old one.

Note added. While completing this manuscript, we became aware
that Rozema et al.34 have experimentally examined the error-disturb-
ance (or measurement-disturbance) relationship by the weak-mea-
surement technique using polarization-entangled photons.

Methods
In our experimental setup (Fig. 3), we use a strongly attenuated diode laser, i.e., a weak
coherent light, as the photon source. A polarizer and wave plates prepare the initial
polarization qubit yj i~ 0j izi 1j ið Þ

� ffiffiffi
2
p

~ 0Yj i, one of the eigenstates of Y. A half-
wave plate (HWP) or a polarizer is used to prepare the states Zjyæ, Xjyæ, (Z 1 I)jyæ 5

2j0æÆ0jyæ, and (X 1 I)jyæ 5 2j0XæÆ0Xjyæ, which are required for the three-state
method for the Z and X measurements (see Supplementary Information). The probe
path qubit, which is initialized at j0æ, is introduced to the same single-photon state by
directing the photon at one (labelled 0) of the two input modes of the polarization
beamsplitter (PBS).

For the prepared initial two-qubit state jyæ fl j0æ, the CNOT operation is imple-
mented with the PBS. The conditional Hadamard-like operations are implemented
with the HWPs placed in the path modes 0 and 1. The HWP with angle Q corresponds
to the Hadamard-like operation W(2Q) in Fig. 2 (b). The second CNOT operation is
again implemented with the second PBS, and the third CNOT is carried out by the
HWP (Q 5 p/4) placed in mode 1 after the second PBS. In this way, the Z mea-
surement with arbitrary measurement strength is implemented and the outcome is
held in the probe, i.e., the path qubit.

Figure 4 | Measurement error (a) and disturbance (b) as functions of
measurement strength s 5 cos 2h. Solid lines show the theoretical error

and the disturbance after the non-ideal extinction ratio of a PBS is taken

into account. Dashed lines show theoretical curves for an ideal PBS, which

has perfect extinction ratio. Experimentally measured quantities O (solid

circles) and H (solid squares) appearing in Ozawa’s quantity (12) and

Heisenberg’s quantity (11), respectively (c). Upper and lower solid lines are

corresponding theoretical plots as functions of measurement strength after

the non-ideal PBS extinction ratio is taken into account. Dashed and

dotted lines are theoretical plots for an ideal PBS. From Eq.(4) and Eq.(5),

both uncertainty relations have the same lower bound C(Z, X) 5 1 (middle

solid line). The data clearly demonstrate that Ozawa’s relation is always

valid, whereas Heisenberg’s relation is false for all measurement strengths.

www.nature.com/scientificreports
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The signal qubit is now subjected to the X measurement, i.e., about 645u polar-
izations, with a HWP and a PBS followed by two (for a total of four) detectors, Dij. The
subscripts i and j denote the Z and X measurement outcomes, respectively. We record
the photon counts Nij(j) of the four detectors Dij for the input signal state jjæ. From
the results for the input states jjæ 5 jyæ, Zjyæ, Xjyæ, (Z 1 I)jyæ, and (X 1 I)jyæ, we
evaluate the error (disturbance) in the Z (X) measurement. Detailed materials are
available as Supplementary Information.
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