matematika



Hyperbolic functions - sinh, cosh, tanh, coth, sech, csch

DEFINITION OF HYPERBOLIC FUNCTIONS

Hyperbolic sine of x = sinh x = (ex - e-x)/2

Hyperbolic cosine of x = cosh x = (ex + e-x)/2

Hyperbolic tangent of x = tanh x = (ex - e-x)/(ex + e-x)

Hyperbolic cotangent of x = coth x = (ex + e-x)/(ex - e-x)

Hyperbolic secant of x = sech x = 2/(ex + e-x)

Hyperbolic cosecant of x = csch x = 2/(ex - e-x)

RELATIONSHIPS AMONG HYPERBOLIC FUNCTIONS

tanh x = sinh x/cosh x

coth x = 1/tanh x = cosh x/sinh x

sech x = 1/cosh x

csch x = 1/sinh x

cosh2x - sinh2x = 1

sech2x + tanh2x = 1

coth2x - csch2x = 1

FUNCTIONS OF NEGATIVE ARGUMENTS

sinh(-x) = -sinh x

cosh(-x) = cosh x

tanh(-x) = -tanh x

csch(-x) = -csch x

sech(-x) = sech x

coth(-x) = -coth x

ADDITION FORMULAS

sinh (x ± y) = sinh x cosh y ± cosh x sinh y

cosh (x ± y) = cosh x cosh y ± sinh x sinh y

tanh(x ± y) = (tanh x ± tanh y)/(1 ± tanh x.tanh y)

coth(x ± y) = (coth x coth y ± l)/(coth y ± coth x)

DOUBLE ANGLE FORMULAS

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh2x + sinh2x = 2 cosh2x — 1 = 1 + 2 sinh2x

tanh 2x = (2tanh x)/(1 + tanh2x)

HALF ANGLE FORMULAS

sinh x/2 = ± [+ if x > 0, - if x < 0]

cosh x/2 =

tanh x/2 = ± [+ if x > 0, - if x < 0]

= <(sinh x)/(cosh x — 1) = (cosh x + 1)/sinh x

MULTIPLE ANGLE FORMULAS

sinh 3x = 3 sinh x + 4 sinh3 x

cosh 3x = 4 cosh3 x — 3 cosh x

tanh 3x = (3 tanh x + tanh3 x)/(1 + 3 tanh2x)

sinh 4x = 8 sinh3 x cosh x + 4 sinh x cosh x

cosh 4x = 8 cosh4 x — 8 cosh2 x + 1

tanh 4x = (4 tanh x + 4 tanh3 x)/(1 + 6 tanh2 x + tanh4 x)

POWERS OF HYPERBOLIC FUNCTIONS

sinh2 x = ½cosh 2x — ½

cosh2 x = ½cosh 2x + ½

sinh3 x = ¼sinh 3x — ¾sinh x

cosh3 x = ¼\\ cosh 3x + ¾cosh x

sinh4 x = 3/8 - ½cosh 2x + 1/8cosh 4x

cosh4 x = 3/8 + ½cosh 2x + 1/8cosh 4x

SUM, DIFFERENCE AND PRODUCT OF HYPERBOLIC FUNCTIONS

sinh x + sinh y = 2 sinh ½(x + y) cosh ½(x - y)

sinh x - sinh y = 2 cosh ½(x + y) sinh ½(x - y)

cosh x + cosh y = 2 cosh ½(x + y) cosh ½(x - y)

cosh x - cosh y = 2 sinh ½(x + y) sinh ½(x — y)

sinh x sinh y =    ½(cosh (x + y) - cosh (x - y))

cosh x cosh y = ½(cosh (x + y) + cosh (x — y))

sinh x cosh y = ½(sinh (x + y) + sinh (x - y))

EXPRESSION OF HYPERBOLIC FUNCTIONS IN TERMS OF OTHERS

In the following we assume x > 0. If x < 0 use the appropriate sign as indicated by formulas in the section "Functions of Negative Arguments"

  sinh x = u cosh x — u tanh x = u coth x = u sech x = u esch x = u
sinh x u radic(u^2 - 1) u u/radic(1 - u^2) l/radic(u^2 - 1) radic(1 - u^2)/u 1/u
cosh x radic(1 + u^2) u 1/radic(1 - u^2) u/radic(u^2 - 1) 1/u radic(1 + u^2)/u
tanh x u/radic(1 + u^2) radic(u^2 - 1)/u u 1/u radic(1 - u^2) 1/radic(1 + u^2)
coth x radic(1 + u^2)/u u/radic(u^2 - 1) 1/u u 1/radic(1 - u^2) radic(1 + u^2)
sech x 1/radic(1 + u^2) 1/u radic(1 - u^2) radic(u^2 - 1)/u u u/radic(1 + u^2)
csch x 1/u 1/radic(u^2 - 1) radic(1 - u^2)/u radic(u^2 - 1) u/radic(1 - u^2) u

GRAPHS OF HYPERBOLIC FUNCTIONS

y = sinh x
y = cosh x

 

y = tanh x
y = coth x

 

y = sech x
y = csch x

INVERSE HYPERBOLIC FUNCTIONS

If x = sinh y, then y = sinh-1 a is called the inverse hyperbolic sine of x. Similarly we define the other inverse hyperbolic functions. The inverse hyperbolic functions are multiple-valued and as in the case of inverse trigonometric functions we restrict ourselves to principal values for which they can be considered as single-valued.

The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued.

sinh-1 x = ln (x +)     -∞ < x < ∞

cosh-1 x = ln (x + )     x ≥ 1 [cosh-1 x > 0 is principal value]

tanh-1x = ½ln((1 + x)/(1 - x))     -1 < x < 1

coth-1 x = ½ln((x + 1)/(x - 1))     x > 1 or x < -1

sech-1 x = ln ( 1/x + )     0 < x ≤ 1  [sech-1 a; > 0 is principal value]

csch-1 x = ln(1/x + )     x ≠ 0

RELATIONS BETWEEN INVERSE HYPERBOLIC FUNCTIONS

csch-1 x = sinh-1 (1/x)

sech-1 x = cosh-1 (1/x)

coth-1 x = tanh-1 (1/x)

sinh-1(-x) = -sinh-1x

tanh-1(-x) = -tanh-1x

coth-1 (-x) = -coth-1x

csch-1 (-x) = -csch-1x

GRAPHS OF INVERSE HYPERBOLIC FUNCTIONS

y = sinh-1x
y = cosh-1x

 

y = tanh-1x
y = coth-1x

 

y = sech-1x
y = csch-1x

RELATIONSHIP BETWEEN HYPERBOLIC AND TRIGONOMETRIC FUNCTIONS

sin(ix) = i sinh x cos(ix) = cosh x tan(ix) = i tanh x
csc(ix) = -i csch x sec(ix) = sech x cot(ix) = -i coth x
sinh(ix) = i sin x cosh(ix) = cos x tanh(ix) = i tan x
csch(ix) = -i csc x sech(ix) = sec x coth(ix) = -i cot x

PERIODICITY OF HYPERBOLIC FUNCTIONS

In the following k is any integer.

sinh (x + 2kπi) = sinh x     csch (x + 2kπi) = csch x

cosh (x + 2kπi) = cosh x     sech (x + 2kπi) = sech x

tanh (x + kπi) = tanh x     coth (x + kπi) = coth x

RELATIONSHIP BETWEEN INVERSE HYPERBOLIC AND INVERSE TRIGONOMETRIC FUNCTIONS

sin-1 (ix) = isinh-1x sinh-1(ix) = i sin-1x
cos-1 x = ±i cosh-1 x cosh-1x = ±i cos-1x
tan-1(ix) = i tanh-1x tanh-1(ix) = i tan-1x
cot-1(ix) = -i coth-1x coth-1 (ix) = -i cot-1x
sec-1 x = ±i sech-1x sech-1 x = ±i sec-1x
csc-1(ix) = -i csch-1x csch-1(ix) = -i csc-1x

Send us math lessons, lectures, tests to:

Math Bookstore   Questions and Answers
Copyright © 2005-2012.