Tポイントの会員データ分析から企業は何を知るのか - (page 2)

柴田克己 2012年06月11日 16時43分

「ガスト」のメニューは「ビッグデータ」で決められる

 山本氏は、提携先によるデータ分析の事例をいくつか紹介した。たとえば、ある提携先では、特定の商品を購入した人物像のプロファイリングにあたり、Tポイントカードのデータを利用しているという。

 また、別の提携先ではサービス利用の「離反者予測」にデータ分析を活用した。この結果「サービスを一度利用した後、その後1カ月以上利用がない顧客の復帰率が3%未満」であることが分かったという。この結果を元に、例えば「離反予備軍」に属すると思われる顧客データへフラグを設定し、改めてモデルの精度を検証した上で、今後の顧客とのコミュニケーション施策等に盛り込むといった対応が考えられるとする。

 ファミリーレストランで頻繁かつ定期的に行われる「メニュー改定」にあたって、このTポイント会員のデータを活用しているのが、すかいらーくグループの「ガスト」だ。同社では来店した顧客の注文したメニューを「トライアル(注文率)」と「リピート(次回以降に注文した率)」という2軸でプロットして、それぞれのメニューの注文傾向を分析している。

 この分析によって、各メニューは「注文も少なく、リピートもされないもの」「注文数は多いが、リピート率の低いもの」「注文数は少ないが、リピート率は高いもの」「注文数が多く、リピート率も高いもの」といった4つの象限に分類される。この4つの象限のどこに属するかによって、そのメニューを継続するか、削除するか、さらにはより積極的なPRを行うか、品質の向上を図るかといった判断の指針としているという。

  • 「ガスト」における各メニューの「トライアル&リピート分析」。ここでは、ランチの1人客が注文したデータをトライアル率とリピート率の2軸でプロットしている

  • プロットの結果、そのメニューがどの象限に属するかによって、今後の対応が検討される

購買データとの組み合わせでより深いリサーチが可能に

 山本氏は、CCCが行っているリサーチ事業「Tリサーチ」についても紹介。Tリサーチと会員データを組み合わせることにより、より精度が高く、粒度が細かい消費者動向の調査が可能になるとした。

この記事を読んだ人におすすめの資料

関連記事

「特集 : ビッグデータとは何か--課題と機会、ベンダーの戦略」 バックナンバー

ピックアップコンテンツPR

ZDNet JapanスペシャルPR

企画特集一覧へ

ZDNetニューズレターを購読する

カテゴリーランキング
スペシャルPR
新着企業動向

企業動向一覧へ

ZDNet Japanは、CIOとITマネージャーを対象に、ビジネス課題の解決とITを活用した新たな価値創造を支援します。

ITビジネス全般については、CNET Japanをご覧ください。