相対論の考え方[連載]13 目次へ戻ります。 RE:相対論の考え方[連載](1109/1239) あもん様、1102番のコメントありがとうございました。 >すみませんが、c=1の単位系に話を絞ります。数学や物理の基本をきちんと理解 >できていない gyo さんに、通信環境で何もかも教えるというのは、労力の限界か >らして無理だと判断しました。 方程式は等式の性質を使って解くものだと教えられました。等式の性質は、物理の 基本だと私は信じています。このような知識しかない私に、貴重なコメントを下さ るあもん様に、感謝しています。 >>1=3.0×10^8 m/sec は、MKSA単位系では等式の性質からは絶対に導出できませ >>ん。 >そうです。(MKSA 単位系の理論が無矛盾ならば。) MKSA単位系では、等式の性質を使って解けるので矛盾は感じません。 >>もし1=3.0×10^8 m/secをMKSA単位系で認めたら、等式の性質を否定しなければ >>なりません。 >ちがいます。MKSA 単位系ではなくなるだけです。 これは、1=3.0×10^8 m/sec と MKSA単位系は、相容れないものであることを認め ているのですね。 MKSA単位系では[時間]=[長さ]は、両辺の物理量が異なるので認められません。 また、MKSA単位系には[速さ]=[長さ]÷[時間]の等式が存在するので、等式の性質 から[時間]=[長さ]は認められません。 これら2つの事から、1=3.0×10^8 m/sec と MKSA単位系は、相容れないものであ ることを、私は理解しています。 >> 私の説明のどこに間違いがあるか、お教えください。 >c= 3.0×10^8 m/sec =1 より sec=3.0×10^8 m です。よって、 >#1097(gyo さん) >> このためc[無単位]=1[無単位]からは、[時間]=[長さ]が、導けません。 >という陳述は誤りです。 sec=3.0×10^8 mは、MKSA単位系に[速さ]=[長さ]÷[時間]という等式があるので 導出できません。導出できないsec=3.0×10^8 mは、MKSA単位系では認められませ ん。 sec=3.0×10^8 mは、c=1の単位系では認められますが、MKSA単位系では認めら れません。これでよろしいですね。 c= 3.0×10^8 m/sec =1 は、相対論とは独立であると言われました。これは、 c=1の単位系と、相対論の単位系とは無縁のように思えます。では、c=1の単 位系は何のために存在しているのですか。 もしかしてc=1の単位系を認めなければ、相対論の単位系は成り立たないのでは ないですか。だとしたら、c=1の単位系は相対論の単位系の仮定(定義)としなけ ればならないではないですか。 もしこうならば、c=1の単位系とMKSA単位系は相容れないので、相対論の単位系 とMKSA単位系も相容れないと言えます。 だとしたら、相対論の単位系は、MKSA単位系を説明することはできないはずです。 このように考えると、相対論の単位系は何を説明するためにあるのか、という疑問 を感じます。 私のこの考えは、間違っているのでしょうか。 >> なぜc=1単位系は等式の性質を否定しているのか、お教えください。 >両辺で単位が合うことを "等式の性質" だとおっしゃるなら、c=1の単位系は >"等式の性質" を満たしません(例:sec=3.0×10^8 m)。同様に、MKSA 単位系も >"等式の性質" を満たしません(例:cal=4.1855J, N=kg・m/sec^2)。一般に、組 >立単位の使用を許す単位系は "等式の性質" を満たしません。ですから、質問に対 >する答えは、例えば、 >c=1の単位系は、MKSA 単位系と同様、組立単位の使用を許しているから >となります。( m, sec のうち、どちらを組立単位と思うかは自由です。) sec=3.0×10^8 mは両辺の物理量が異なります。従ってMKSA単位系では等式ではあ りません。また、等式の性質からもsec=3.0×10^8 mをMKSA単位系では導出できま せん。また、この定義は現実世界に当てはまりません。この定義は現実世界での説 明ができません。 cal=4.1855J、この式は換算式です。左右両辺とも同じものを表しています。 N=kg・m/sec^2、これは定義です。左右両辺とも同じものを表しています。しかもこ の定義は現実世界での説明が可能です。 >同様に、MKSA 単位系も"等式の性質" を満たしません(例:cal=4.1855J, N=kg・ >m/sec^2)。一般に、組立単位の使用を許す単位系は "等式の性質" を満たしませ >ん。 これら2つの例は、等式の両辺とも、同じ物理量を表しているものです。言い方を 変えれば、換算の決まりを表したものです。たとえて言えば、秒、分、時、日、年 は、みな同じ[時間]を表すものです。同じ[時間]と言う物理量を互いに換算するた めの式が存在します。 1[分]=60[sec]、1[時間]=60[分]、1[日]=24[時間]、1[年]=365.24[日]です。 あもん様が、ここの例にあげたものは、このような両辺とも同じ物理量を表すもの の仲間です。 [時間]=[時間]であり、[速さ]=[速さ]であり、[熱量]=[熱量]であり、[ニュート ン]=[ニュートン]です。両辺とも同じ物理量です。換算を表すための式の両辺の物 理量は実質的に一致しています。 これらは、異なる物理量を同じ物としている[時間]=[長さ]とは、異なります。 1103番のコメント、ありがとうございました。 >ちなみに私は「組立単位」を「基本単位でない単位」という意味で使っていて、こ >れは普通に用いる組立単位の意味より広い意味になります。気になる場合は、私が >使う「組立単位」を「基本単位でない単位」と置換して読んで下さい。 速さ[m/sec]は、長さ[m]と時間[sec]の基本単位を使った組立単位といってよいと思 います。 速さ[m/sec]=長さ[m]÷時間[sec] この左辺は組立単位です。右辺は左辺を求めるための式です。 ニュートン[kg・m/(sec^2)]は、質量[kg]と長さ[m]と時間[sec]の基本単位を使った 組立単位です。 N[kg・m/(sec^2)]=質量[kg]×長さ[m]÷時間[sec]÷時間[sec] この左辺は組立単位です。右辺は左辺を求めるための式です。 [N]を基本単位を使って表せば、[kg・m/(sec^2)]となります。 速さ[m/sec]とニュートン[N]=[kg・m/(sec^2)]は、このような共通点を持っていま す。速さとニュートンの2つの式の両辺とも、実質的に同じ物理量を表していま す。[速さ]=[速さ]、[ニュートン]=[ニュートン]です。MKSA単位系で使っている 組立単位の式は、左右両辺で、実質的に等しいものです。従って矛盾は感じませ ん。 しかし[長さ]=[時間]は、両辺の物理量が異なるので、矛盾を感じます。 >c=1の単位系は、MKSA 単位系と同様、組立単位の使用を許しているから >となります。( m, sec のうち、どちらを組立単位と思うかは自由です。) [m]と[sec]は、共に基本単位です。どちらも組立単位ではありません。 お互いに異なる基本単位である[m]と[sec]が等しいということは、MKSA単位系では 認めていないと思います。また、物理学でも認めていないと思います。 [m]と[sec]が等しいということは、c=1の単位系や、相対論の単位系で認めてい ることなのでしょうか。 1105番のコメント、ありがとうございました。 >訂正です: >>もし1=3.0×10^8 m/secをMKSA単位系で認めたら、等式の性質を否定しなければ >>なりません。 >ちがいます。MKSA 単位系ではなくなるだけです。 1=3.0×10^8 m/secは、MKSA単位系とは相容れないものだと理解しました。 >gyo さんは両辺で単位が一致することを "等式の性質" としているようなので、こ >の意味では、答えは「その通り」でした。もちろん、"等式の性質" は MKSA 単位 >系においても、例えば N という組立単位を使う場合、満たされません。 再度書かせていただきます。N=kg・m/(sec^2)は、換算式です。この両辺は実質的に 同じ物理量を表しています。このように考えていますので、矛盾は感じません。ま た、等式の性質を満たしていると考えています。これは、[長さ]=[時間]のように 異なる物理量を等しいとする等式とは異なります。 [長さ]=[時間]の等式は、[速さ]=[長さ]÷[時間]という等式があるMKSA単位系で は成り立ちません。 [長さ]=[時間]は、c=1の単位系で成り立つものだと理解しました。 また、MKSA単位系とc=1の単位系とは相容れないものであることも理解しまし た。 MKSA単位系では 組立単位=基本単位を使った式、であり、両辺とも実質的に同じ 物理量が表されている等式であることも理解しました。 c=1の単位系では、両辺の物理量が異なるもの同士を等式としていることが分か りました。 あもん様、ありがとうございました。 gyo 先頭へ戻ります。 相対論の考え方[連載]14へ続きます