目次

第1章 時間	
1.1 時間とは何か・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 時間測定の種々の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.3 天文時間と局所時間・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
1.4 共通時間の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.5 時間と空間の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1.6 特殊相対性理論の矛盾について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
第 2 章 速度 第 2 章 速度	
2.1 速度と相対速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2.2 相対量を用いない加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
2.3 加速度計による速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
2.4 慣性速度と座標速度の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
第3章 空間	
3.1 距離測定の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
3.2 局所依存距離と非局所依存距離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
3.3 座標・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
第4章 相対性原理	
4.1 ガリレイの相対性原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
4.2 ガリレイの慣性座標系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
4.3 マイケルソン゠モーレーの実験・・・・・・・・・・・・・・・・・	37
4.4 アインシュタインの特殊相対性理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
4.5 特殊相対性理論の座標系に対する認識・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
4.6 波を対象にできる慣性座標系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
4.7 光の伝播経路による随伴について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
4.8 絶対速度という概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57

4.9 加速の方法の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
4.10 限界速度について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
第5章 運動量の保存	
5.1 2つの球の弾性衝突の物理学者の解釈・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
5.2 2つの球の弾性衝突の物理学者の解釈の何が	
間違っているのか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
5.3 運動量保存の法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
5.4 運動エネルギー保存の法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
5.5 運動量保存の法則の正しい応用・・・・・・・・・・・・・・・・・	75
5.6 運動量と相対速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
第6章 ベクトル	
6.1 スカラーとベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
6.2 ベクトルの表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
6.3 ベクトルの合成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
6.4 ベクトルとスカラーの積・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
6.5 ベクトルの解析的表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
6.6 位置ベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
6.7 ベクトルの解析的な加法、減法、スカラーとの積・・	90
6.8 ベクトルの内積・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
6.9 ベクトルの外積・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
6.10 三つのベクトルの積・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
6.11 ベクトルの商・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
第7章 運動 ~ 微分・積分の基本概念 ~	
7.1 現象の記述・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
7.2 微分の基本的な概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
7.3 関数と増分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	105
7.4 微分計算の基本手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
7.5 微分の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107

7.6 微分公式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
7.7 三次元での微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	108
7.8 ベクトルの微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
7.9 定積分の基本的な概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
7.10 原始関数と導関数の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
7.11 不定積分の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
7.12 定積分と不定積分の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	115
7.13 ゼロの積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
7.14 積分公式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
7.15 広義積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	119
7.16 ベクトルの積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
第8章 力とエネルギー ~加速度のある力と加速度ゼロの力	~
8.1 力に関する現象の考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	125
8.2 力とは何か・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
8.3 力と加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
8.4 加速度ゼロの力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	129
8.5 力とエネルギー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
8.6 加速度ゼロの力と加速度ゼロでない力の関係・・・・・・	134
8.7 物体が動いていないときに加えられる力に対して	
エネルギーが必要ないか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
8.8 風のアナロジー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
8.9 力の合成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
第9章 見かけの力 ~相対加速度と非相対加速度による力~	
9.1 見かけの力として説明されていること・・・・・・・・・・・・・・・	143
9.2 見かけの速度という概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	145
9.3 見かけに関する用語・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	145
9.4 既存の物理学の知識では実在の力は表現できない・・	146
9.5 見かけではない速度とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	147
9.6 実在の力の概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	148

9.7 加速度に伴う力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	149
9.8 相対ということと慣性ということの違い・・・・・・・・	151
9.9 回転に伴う力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	152
第10章 力の表現~加速度の時間微分と空間微分による力の表	現~
10.1 時間微分による加速度の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	157
10.2 空間微分による加速度の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159
10.3 時間微分による加速度と	
空間微分による加速度の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
10.4 代数的導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	164
10.5 位置の関数としての速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	165
10.6 三次元での表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	166
10.7 常微分と偏微分の違い・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	167
10.8 位置加速度とハミルトンの原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	170
第11章 ベクトル解析	
11.1 スカラの勾配・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	173
	175
11.3 重積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	176
11.4 線積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	179
11.5 面積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	184
11.6 ガウスの発散定理···············	_
11.7 ベクトルの発散・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
11.8 曲面の法線と方向余弦の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
11.9 平面におけるグリーンの定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	192
11.10 ストークスの定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	194
	197
11.12 ベクトルの公式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	197
11.12 (7) [7](0) [2] 10	נטו
第12章 万有引力の法則	
12.1 座標系の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	201

12.2	万有引力の法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	203
12.3	万有引力の法則の場としての表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204
12.4	静止している物体の加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	206
12.5	保存力場・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	207
12.6	風の保存力場・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	211
	位置エネルギーという概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	213
12.8	ポテンシャルの物理的意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	216
12.9	重力速度の導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	217
12.10) 力学的エネルギー保存の法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	219
12.11	運動エネルギー保存の法則とは何か・・・・・・・・・	222
12.12	2 光の速度による重力速度の表現・・・・・・・・・・・・・・・	224
第13章 静	的な場の法則 ~クーロンの法則と万有引力の法則	~
13.1	クーロンの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	227
13.2	電場・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	231
13.3	電位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	232
13.4	電位の傾き・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	234
13.5	電荷分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	235
13.6	電束とガウスの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	235
13.7	ガウスの法則の微分形式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	238
13.8	万有引力の法則の電気力学的表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	239
第14章 磁	場の概念	
14.1	電流・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	241
14.2	質量の流れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	244
14.3	右ねじの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	247
14.4	アンペールの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	249
14.5	電気的な磁場の数学的導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	252
14.6	重力的な磁場・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	255
14.7	流体力学的な磁場・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	256
14.8	重力的な磁力は存在するか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	260

14.9 重力による推進装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	262
14.10 重力場におけるアンペール・マクスウェルの法則	263
14.11 磁場と相対性理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	267
第15章 ファラデーの法則の重力的な表現	
15.1 静電分極・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	271
15.2 磁気誘導・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	272
15.3 磁束・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	273
15.4 ファラデーの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	274
15.5 ベクトルポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	278
15.6 ファラデーの法則の定常形式の別表現・・・・・・・・・	283
15.7 電気と重力の基本的な違い・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	285
15.8 重力場におけるアンペールの法則の書き換え・・・・・	286
15.9 重力場におけるファラデーの法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	287
15.10 運動する重力場によって受ける力・・・・・・・・・・・・	289
15.11 運動する重力場のエネルギー・・・・・・・・・・・・・・・	291
15.12 重力利用型の永久エネルギー機関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	293
15.13 相対運動における相互作用・・・・・・・・・・・・・・・・・	294
15.14 エネルギーが保存されるということ・・・・・・・・・・・	295
第16章 重力制御の応用	
16.1 非対称質量分布の回転重力場による推進機関・・・・・	300
16.2 回転重力場干渉型の推進機関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	302
16.3 重力発電機(フリーエネルギー装置)・・・・・・・・・・・・・・・	304
16.4 重力による推進機関の速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	306
16.5 恐竜と人間はどちらが賢いか・・・・・・・・・・・・・・・・	307