Estimation of substitution elasticities for CGE models

Azusa OKAGAWA

JSPS/National Institute for Environmental Studies

Kanemi BAN
Graduate School of Economics, Osaka University

Outline

- 1. Introduction
 - Background
- 2. Estimation of substitution elasticities
 - Estimated model
 - Role of substitution elasticities in CGE models
 - Estimation results
- Policy simulations using estimated parameters
 - Our CGE model
 - Macroeconomic impacts
 - Industrial impacts
- 4. Summary

1. Introduction

Background

Many studies of climate policy are based on computable general equilibrium (CGE) modeling.

The lack of the empirical evidence for the key parameters in CGE models

- The simulation results depend on the size of parameters specified.
- In particular, the substitution elasticities between production factors have a major influence.

2. Estimation of substitution elasticities

Estimation model

Three levels of nested CES

$$Q = \left[\alpha_{top}LKE^{\frac{\sigma_{top}-1}{\sigma_{top}}} + (1-\alpha_{top})M^{\frac{\sigma_{top}-1}{\sigma_{top}}}\right]^{\frac{\sigma_{top}-1}{\sigma_{top}-1}} \ln\left(\frac{LKE}{M}\right) = \beta_{top} + \sigma_{top}\ln\left(\frac{P_{M}}{P_{LKE}}\right)$$

$$LKE = \left[\alpha_{KE-L}L^{\frac{\sigma_{KE-L}-1}{\sigma_{KE-L}}} + (1-\alpha_{KE-L})KE^{\frac{\sigma_{KE-L}-1}{\sigma_{KE-L}}}\right]^{\frac{\sigma_{KE-L}}{\sigma_{KE-L}}} \ln\left(\frac{KE}{L}\right) = \beta_{KE-L} + \sigma_{KE-L}\ln\left(\frac{P_L}{P_{KE}}\right)$$

$$KE = \left[\alpha_{KE}K^{\frac{\sigma_{KE}-1}{\sigma_{KE}}} + (1-\alpha_{KE})E^{\frac{\sigma_{KE}-1}{\sigma_{KE}}}\right]^{\frac{\sigma_{KE}-1}{\sigma_{KE}-1}}$$

The models to be estimated

$$\ln\left(\frac{LKE}{M}\right) = \beta_{top} + \sigma_{top} \ln\left(\frac{P_{M}}{P_{LKE}}\right)$$

$$\beta_{top} = \sigma_{top} \ln\left[\frac{1 - \alpha_{top}}{\alpha_{top}}\right]$$

$$\beta_{KE-L} = \beta_{KE-L} + \sigma_{KE-L} \ln \left(\frac{P_L}{P_{KE}} \right)$$

$$\beta_{KE-L} = \sigma_{KE-L} \ln \left[\frac{1 - \alpha_{KE-L}}{\alpha_{KE-L}} \right]$$

$$\ln\left(\frac{E}{K}\right) = \beta_{KE} + \sigma_{KE} \ln\left(\frac{P_{K}}{P_{E}}\right)$$

$$\beta_{KE} = \sigma_{KE} \ln\left[\frac{1 - \alpha_{KE}}{\alpha_{KE}}\right]$$

Role of substitution elasticity σ

Larger σ

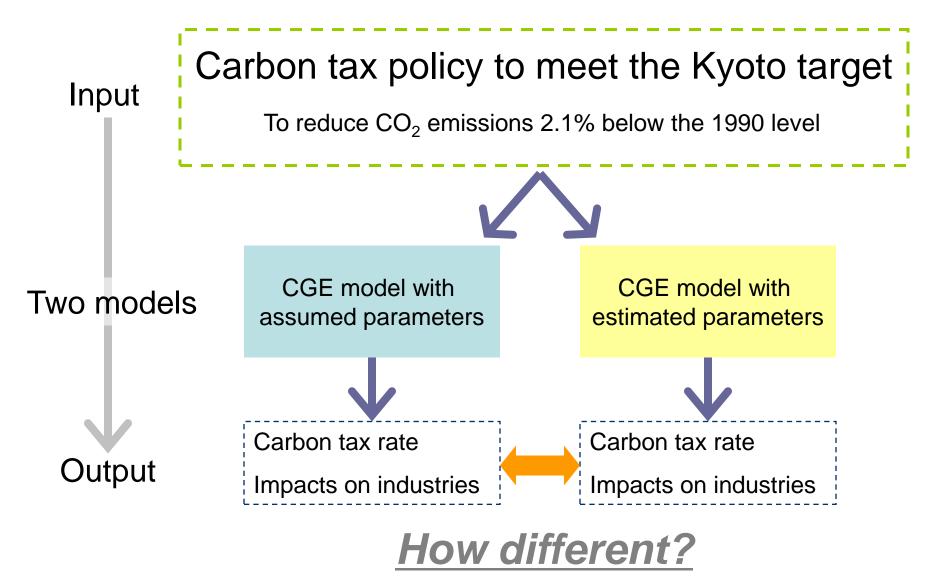
The sigma is the degree of how easily they can buy energy efficient equipments when energy costs increase.

Lower cost of CO₂ emission reductions

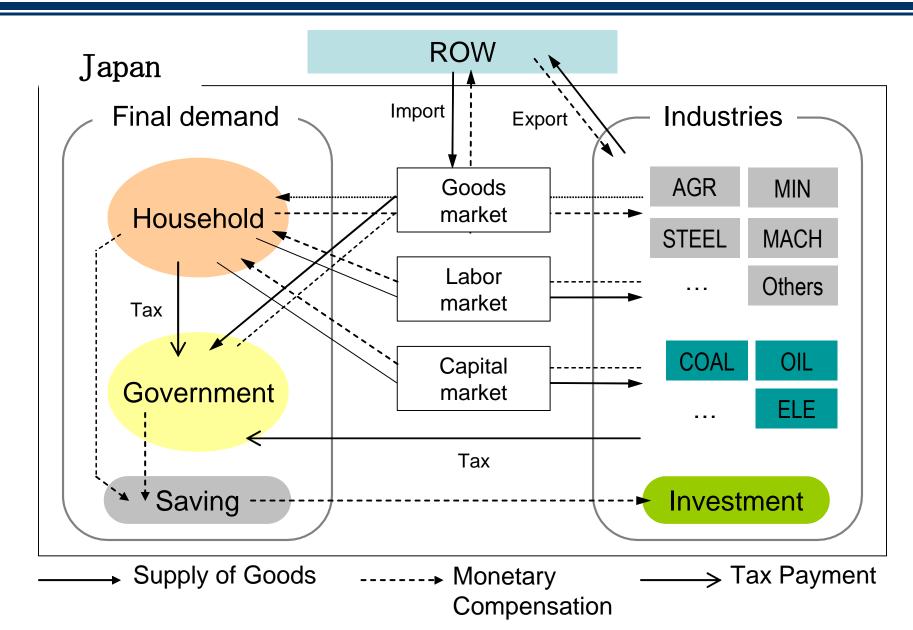
Smaller economic impact by CO₂ emission reductions

The σ has a major influence on simulation results of CGE models and therefore policy designs.

Data


- Panel data analysis
 - Period: 1995-2004
 - OECD 14 countries
 - Austria, Belgium, Denmark, Spain, Finland, France, Germany, Italy, Japan, Luxemburg, Netherlands, Sweden, UK, US
 - 18 industries
 - Agriculture, Mining, Food, Textile, Wood, Paper & pulp, Chemical, Non-ferrous metal, Machinery, Electrical equipment, Transport equipment, Other manufacturing, Electricity-water-gas distribution, Construction, Transportation, Telecom, Financial service, Personal service
 - Formed by EU-KLEM project (European committee)

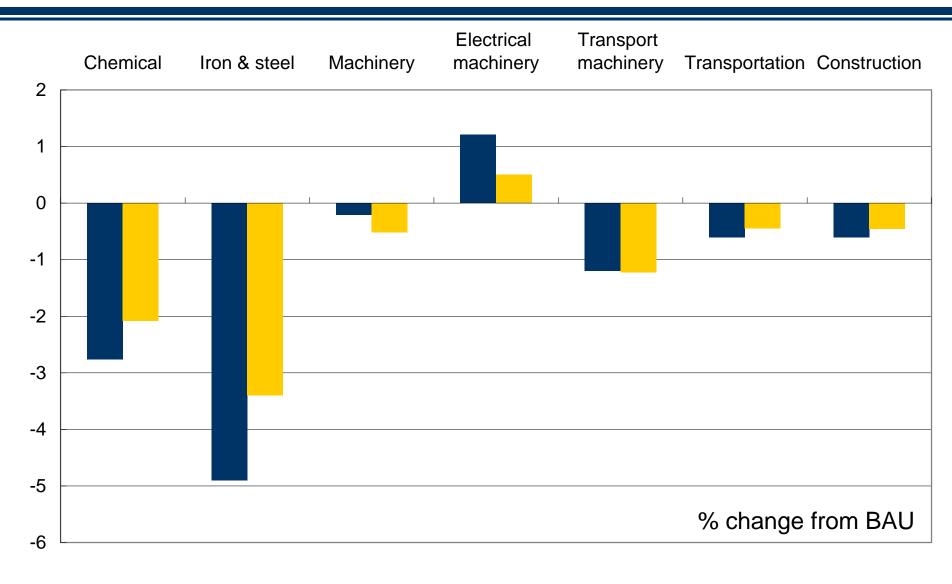
Estimation results


	assumed parameters	5	estimated parameters
		σ	top
Chemical	0.00	<	0.81
Iron & Steel	0.00	<	1.05
Machinery	0.00	<	1.15
Electrical equipment	0.00	<	0.75
Transport equipment	0.00	<	1.04
Transport	0.00	<	1.05
Construction	0.00	<	0.97
		σκ	E-L
Chemical	0.80	>	0.34
Iron & Steel	0.80	>	0.00
Machinery	0.80	>	80.0
Electrical equipment	0.80	>	0.33
Transport equipment	0.80	>	0.43
Transport	0.80	>	0.47
Construction	0.80	<	0.94
		σι	KE
Chemical	0.10	>	0.04
Iron & Steel	0.10	<	0.29
Machinery	0.20	>	0.12
Electrical equipment	0.20	<	0.25
Transport equipment	0.20	>	0.09
Transport	0.10	<	0.45
Construction	0.20	>	0.11

3. Policy simulation using estimated parameters

Comparison of different sigma

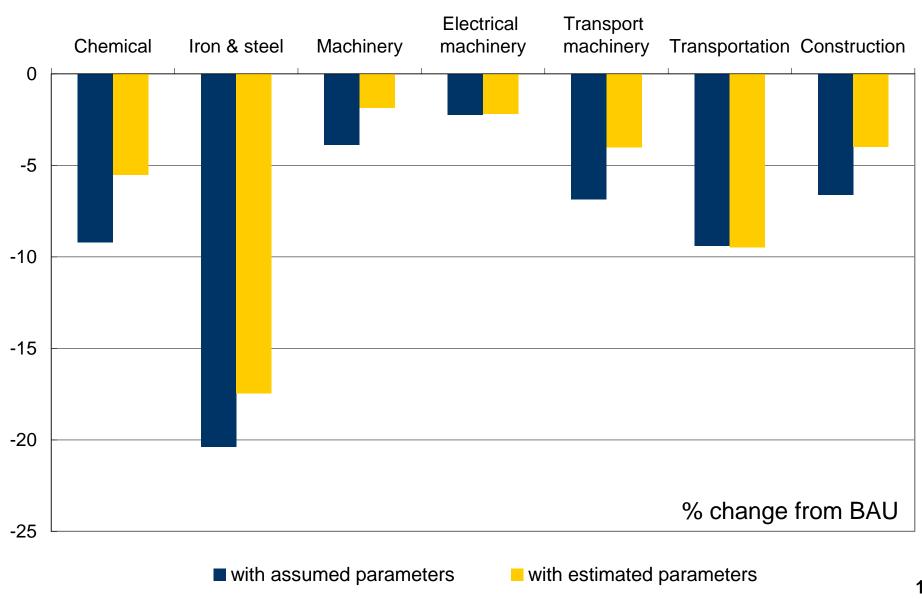
Framework of our CGE model



The results for macroeconomic impact

Model	with assumed parameters	with estimated parameters
CO2 reduction rate (%)	13.00	13.00
Carbon tax rate (yen/t-C)	18,766	13,075
GDP (%)	-1.10	-0.79
Equivalent Value (%)	-0.19	-0.16

Overestimation of the necessary carbon tax rate by 44% using assumed parameters


Industrial output change

with estimated parameters

■ with assumed parameters

Emission reduction

4. Summary

- We specified key parameters of CGE models by observation data.
 - Higher elasticities for energy intensive industries
 - Lower elasticities for non-energy intensive industries
- If we use conventional parameters, we could over-estimate the impacts of the climate policy.
 - 44% higher reduction costs for 1t of CO₂ emissions
 - Distribution of reduction costs of CO₂ emissions between industries