ナビゲーションを飛ばして本文へ
サイトマップ記事検索 情報データベース

中村裁判スペシャルレポート

青色LED訴訟の「真実」

問われる相当対価「604億円」の根拠

1 | 2 | 3

競合の他社も研究者も「使わない」
本当に「ダイヤの原石」と言えるか

Part 2―404特許の現実

「404特許」で作る窒化ガリウム(GaN)単結晶膜を「ダイヤモンドの原石」と訴える中村修二氏。ところが日亜化学工業は,量産には不要と主張する。GaN系半導体デバイスを開発する他の研究者からは404特許に「興味はない」という声が上がる。LEDメーカーも「404特許を使う必要はない」と証言する。GaNの業界では404特許に対する評価は低い。

 地方の蛍光体メーカーである日亜化学工業が,世界に先んじて「世紀の発明」とも言われる高輝度青色発光ダイオード(LED)の製品化に成功した。そしてそれを独力でやり遂げたのは,中村修二氏という研究者だった─。

 多くのメディアがこう報じ,中村氏は日本の技術者の中で知らない人はいないというほどの「スター研究者」となった。日亜化学工業での「少ない予算」や「乏しい技術やノウハウ」「社長による開発中止命令」などの逆境をはねのけ,たった1人で難題を解決したという,自身が披露した「エピソード」も加味されて,世間では中村氏が起こした訴訟を,簡単に「青色LED訴訟」と呼んでいる。

1件の特許に関する訴訟

 だが,この呼称が,世間の認識に誤解を与える一因となっていることは否めない。例えば,ある大手電機メーカーの社員は「日亜化学工業は青色LEDで莫大な利益を出した。その青色LEDの発明者である中村氏が200億円の相当対価を得るのは当然」と言う。この社員は中村氏が起こした特許訴訟は,「青色LED発明の特許」に対するものととらえているのである。こうした認識をする人は少なくないようだ。

 実際には,中村氏が起こした裁判は,窒化ガリウム(GaN)系化合物の単結晶を製膜するツーフローMOCVD装置の特許,つまり,特許第2628404号(404特許)1件に対するものだ(図1)。高輝度青色LEDや青紫色レーザダイオード(青色LD)を作るには,GaN系化合物の結晶膜を複数積層させる必要がある(図2)。404特許はその製膜に使う技術であり,ほかに数多く存在する工程や技術の一つにすぎない。例えば,日亜化学工業が高輝度青色LEDや青色LD,白色LEDに関連する特許として出願した数は1990〜2003年の14年間で847件にも及ぶ。さらに言えば,製膜方法はツーフローMOCVD装置の方法に限られているわけではない。

404特許が「莫大な利益の源泉」

 にもかかわらず,中村氏はこう訴える。「被告会社(日亜化学工業)が市場において圧倒的な競争力を誇る高輝度のLED及びLDについては,本件特許(404特許)権の貢献度が100%であり,その他の技術の貢献度はゼロというべきである。なぜなら,発光素子を構成する窒化物化合物(GaN系化合物)の結晶膜の質がよくなければ,その他の点でいくら優秀な技術を用いても,高輝度の発光素子を製造することはできない。例えていえば,質の高い結晶膜はダイヤモンドの原石なのであり,原石がよくなければ,いくら磨いても高品質のダイヤモンドは得られないのである」。

 続けて同氏は「そのことは,本件特許(404特許)権を独占する被告会社(日亜化学工業)が,(中略)それなりの代替技術や独自技術を有する競業会社である豊田合成株式会社及び米国法人クリー社に比して,常に何割か輝度の高いLED及びLDを製造し続け,市場における優位性を保ち,限界利益率80%という驚異的な高収益をあげていることに,端的に示されているというべきである」と主張する。

 要は,日亜化学工業の高輝度青色LEDや青色LD,白色LEDが同社に高収益をもたらしているのは,良質な結晶膜でできているから。それは404特許だから作製できた。従って,404特許こそが同社の高輝度青色LEDや青色LD,白色LEDの発明の「すべて」であり,高収益の源泉だ─というのが中村氏の主張である。

 同氏の著書「赤の発見 青の発見」(西澤潤一・中村修二共著,白日社)には以下のような記述がある(図3)。「『ツーフローMOCVD』ができてからは,何をやっても,数カ月単位で窒化ガリウムの世界でブレークスルーが達成でき,それが現在まで続いています。

 つまり,『ツーフローMOCVD』という仕組みを実現して以降は,すべてウチが出すデータが世界一なのです。この一〇年近く,ずっと世界一を維持・発展させ続けているんです。だから,『ツーフローMOCVD』が一番大きなブレークスルーだったといえるでしょう。「つくる装置」という根本のブレークスルーを達成したので,その後は,モノのブレークスルーをどんどんしていくことができたのです。

 つまり,青色LEDをつくるためのブレークスルーがどんどん達成され,九三年の終わりに最初に製品化を発表しました。その後,九五年に世界初の青色レーザー発振に成功しました。レーザーは九九年に製品化しました」。

 そして,東京地裁はこうした中村氏の主張をほぼそのまま採用した判決を下す。「競業会社である豊田合成及びクリー社に比して,被告会社(日亜化学工業)が常に何割か輝度の高いLED及びLDを製造し続け,市場における優位性を保っているのは,被告会社が本件特許(404特許)発明を実施して半導体結晶膜を製造し,他方,本件特許(404特許)権の存在により競業会社である豊田合成及びクリー社が本件特許(404特許)発明を用いて半導体結晶膜を製造することができないことに起因するものといわざるを得ない」。

 ところが,その極めて価値の高いはずの発明に対し,中村氏にも日亜化学工業にも関係のない第三者であるGaN系半導体デバイス分野の研究者からは,意外な言葉が聞こえてくる。

「使う必要がない」と言う研究者

 青色LDの開発を目指して研究を進め,1989年に発光層に利用する窒化インジウムガリウム(InGaN)単結晶の作製に世界で初めて成功した,当時NTTの研究者であった松岡隆志氏(現NTT物性科学基礎研究所主幹研究員)は「現在はもちろん,当時(日亜化学工業が高輝度青色LEDの製品化を発表した1993年末ごろ)においてもツーフローMOCVD装置を使ってみたいと思ったことは一度もない」と証言する。

 その理由について同氏は「我々は当時,我々が進めてきた(製膜)方法で技術を立ち上げている最中だった。ツーフロー方式に取り組もうとすれば余計なコストが掛かってしまう。そんな資金もなかった」と語る。

 ツーフローMOCVD装置の発明である404特許の請求範囲には,次のように記述されている。「加熱された基板の表面に窒素化合物半導体結晶膜をMOCVD法でもって常圧で成長させる方法において,基板の表面に平行ないし傾斜する方向には,窒素化合物半導体の原料となる反応ガスを供給し,基板の表面に対して実質的に垂直な方向には,反応ガスを含まない不活性ガスの押圧ガスを供給し,不活性ガスである押圧ガスが,基板の表面に平行ないし傾斜する方向に供給される,窒素化合物半導体の原料となる反応ガスを基板表面に吹き付ける方向を変更させて,窒素化合物の半導体結晶膜を成長させることを特徴とする窒素化合物半導体結晶膜の成長方法」。

 要は,ツーフローMOCVD装置は,その名の通りガスの流れを二つ持ち,横方向から原料ガスとなる有機金属ガリウム(トリメチルガリウム:TMG)とアンモニア(NH3),水素(H2)を流し,上方向からは押圧ガスとなる窒素(N2)と水素(H2)を吹き込む。中村氏は「1方向からガスを供給するだけでは,加熱した基板の高温に起因する熱対流によって反応ガスが舞い上がってしまって高品質な膜ができない」と考え,反応ガスを不活性ガスで上から押さえ付けて基板に蒸着させることを思い付く。この発想を具現化したのがツーフローMOCVD装置だ(図4)。

 こうして開発したツーフローMOCVD装置により,中村氏は基板であるサファイアの上に良質なGaN単結晶膜を作製することに1990年9月ごろに成功する。さらに1991年2月ころには,サファイア基板とGaN単結晶膜との間に,GaNを使った低温緩衝層(低温GaN緩衝層,または低温GaNバッファ層)を挟み込むことにより「ホール移動度*1500」(中村氏)という,当時「世界一高品質な単結晶膜」(同氏)を作製した。

既に良質な結晶の成功例があった

 この緩衝層技術は,高輝度青色LEDなどを製品化する上で極めて重要な意味を持つ。製品化に堪え得る高品質なGaN単結晶膜は,この緩衝層技術があってこそ実現するものだからだ。

 実は,基板となるサファイアとGaN単結晶膜との間には,原子間の距離の差(格子不整)や熱膨張係数の差などが大きく,これらが製品化に十分足る高品質なGaN単結晶膜を作れない大きな原因となっていた。こうした両層の間にいわゆる“接着性を持つクッション”のような緩衝層を挟むことにより,外観品質が高く,かつ結晶欠陥や転位*2が少ないGaN単結晶膜ができるのである。

 だが,この緩衝層技術を最初に発見したのは中村氏ではない。GaNの分野において,同氏の前には既に二つの成功例があった。

 一つは1983年,工業技術院電子技術総合研究所の吉田貞史氏(現埼玉大学工学部教授)のグループが,MBE法*3と呼ぶ製膜方法により,窒化アルミニウム(AlN)を緩衝層に使ったGaN単結晶膜の作製に成功している。続いて1985年には,名古屋大学教授の赤崎勇氏(現名城大学教授)と同氏の研究室に所属していた天野浩氏(現名城大学教授)が,低温AlN緩衝層を使ってMOCVD装置による高品質なGaN単結晶膜を実現した。

 LEDなどの光デバイスではなく,窒化物半導体を使った電子デバイスを研究する産業技術総合研究所(産総研)パワーエレクトロニクス研究センター研究センター長代行総括研究員の奥村元氏はこう語る。「中村氏がツーフローMOCVD装置でGaN単結晶膜を作製する何年も前に,良質なGaN単結晶膜を作る技術を確立させていた研究者はいた。例えば当時,赤崎氏の結晶はホール移動度でいえば300には達していたと思う。(中村氏が強調する)ホール移動度500と300との間には数字上では開きがあるが,実際の結晶の品質は両者の間にほとんど差はない」。

 中村氏に先駆けた工業技術院電子技術総合研究所からも,赤崎氏や天野氏のグループからも,ツーフローMOCVD装置を使ったという論文などは見られない。天野氏は原料ガスを流す石英ガラス管などを自ら細工しながら,サファイア基板の上方から原料ガスを高速に流す独自のMOCVD装置を開発している(図5)*4。奥村氏も「ツーフロー方式など使っていない」。GaN分野の研究者からは,ツーフローMOCVD装置に関心を持つという話は聞こえてこない。

競合メーカーも「無関心」

 研究者だけではない。LEDメーカーの間でもツーフローMOCVD装置に対する関心は低いようだ。例えば,日亜化学工業の最大のライバルである豊田合成は「ツーフローMOCVD装置を使っている事実はない」と,豊田合成の情報に詳しいあるLEDメーカーの幹部は語る*5。

 この幹部の主張には裏付けがある。日亜化学工業と豊田合成との間で繰り広げられた,青色LEDなどをめぐる一連の特許係争だ。1996年8月から始まった両社の間の特許係争は,2002年9月17日に全面和解することで終結する。6年間にも及ぶこの特許係争は,「InGaN層の成長方法」の1件を除いて,すべてチップの構造に対する特許で争っていた。この中に,GaN単結晶膜の製造方法に関する特許で争った形跡は見られない(表)。

 豊田合成は1986年ころから青色LEDに関して赤崎氏と共同研究を開始している。先述のように,赤崎氏と天野氏が中村氏の6年も前に良質なGaN単結晶膜を作製できていた事実を踏まえると「豊田合成にツーフローMOCVD装置は不要」(前出の幹部)という主張に無理はない。

 日亜化学工業のもう一つのライバル,米Cree社については「特許公報等の資料によれば,競業他社である豊田合成やクリー社は,いずれも本件特許(404特許)権の方法とは異なる独自のMOCVD装置を使用している」と日亜化学工業は主張し,このことは中村氏も裁判で認めている。

 産総研の奥村氏はGaN単結晶の作製について次のように説明する。「GaN単結晶膜の作製で重要なのは,基板上で起きる原料ガスの化学反応を制御すること。直接結晶膜を制御するのが理想だが,それはできないため,一つの方法としてガスの流し方を工夫する。要は,良質なGaN単結晶膜を得ることが目的なのであって,それが得られるのであれば,どのようなガスの流し方をしても構わない。ツーフローMOCVD装置のガスの流し方は『One of them』でしかない」。NTT物性科学基礎研究所の松岡氏の説明もこの意見に一致する。「GaNの結晶成長方法は何でもよい。ツーフロー方式はそのうちの一つにすぎない」。

 要するに,良質なGaN単結晶膜を得る方法は,ツーフローMOCVD装置以外にもあったということだ。この事実は「ツーフローMOCVD装置でなければ,高品質なGaN単結晶を得られない」という中村氏の主張を否定する。

「苦労しなかった」という声も

 書籍「『青色』に挑んだ男たち」(中嶋彰著,日本経済新聞社)には,日亜化学工業が高輝度青色LEDを発売した直後である1994年春から,当時ソニーでGaNの研究に着手した河合弘治氏が「苦労を全く」せずに「『横型高流速』タイプの正統的なMOCVD炉で窒化ガリウムの結晶を作った」と紹介されている。

 この方法は「やや斜めに置いたサファイア(基板)に向かって,原料ガスを水平方向から高速に吹き付ける。ポイントはただ『ガスの流速を高めて結晶を成長させる』だけである。奇は全くてらっていない」(図6)。

 ツーフローMOCVD装置で作ったGaN単結晶膜が,ほかの方法より特に良質であるともいえない。前出の書籍「赤の発見 青の発見」には,中村氏自身による発言が見られる。「MOCVDは最初は市販のものを購入したんですが,それを改造して,自分でツーフローMOCVDという新しい装置をつくっていったんです。それでつくった結晶が『いい』と一言では言えないんですね。窒化物というのは不思議な結晶で,転位の数は一〇の一〇乗個くらいもあるんです。現在製品化しているものの結晶でも,ですよ。これは,ガリウム・ヒ素などではまったく考えられないほど欠陥だらけの結晶です。それでもよく光るんです。(中略)結晶成長の装置というのはいろいろあると思うんですけど,結晶の質を評価すると,よその製品より優れているというよりはむしろ劣っているんです。悪いのによく光るんです。だからナイトライド『窒化物』というのは非常に不思議な結晶なんです」。

汎用機で「作れる」

 あるMOCVD装置メーカーからは次のような声が上がる。「ツーフロー方式の装置など作っていない。今は1方向からガスを流す汎用のMOCVD装置で良質なGaN系結晶膜を作れる」。

 これに対してNTT物性科学基礎研究所の松岡氏からも「恐らく,ツーフローMOCVD装置を使っているとしたら日亜化学工業だけだろう。何年も前から既成の縦型MOCVD装置で良質な結晶の成長ができている。わざわざツーフロー方式にする必要はないと思う」という意見が聞こえてくる。

 中村氏がツーフローMOCVD装置を開発した1990年代初頭には,GaN専用のMOCVD装置は販売されていなかった。だが,その後「メーカーの技術が向上し,既成のMOCVD装置でユーザーが特に苦労せずに,中村氏が実現した程度の良質なGaN単結晶膜ができるようになった」と前出のMOCVD装置メーカーは語る。

 窒化物半導体の研究者からはこうした証言も得られる。「GaN単結晶膜の高品質化に関する論文が出ていたのは1996〜1997年ぐらいまで。その後は結晶の品質の話題はなくなった」(産総研の奥村氏)。

 たとえ他の研究者や企業が興味を示さなくても,日亜化学工業が量産工程に使用しているのであれば,ツーフローMOCVD装置にそれ相応の価値はあるだろう。ところが,同社はツーフローMOCVD装置は「再現性が極めて悪く,工業化には不向き」と主張し,その理由として「わずかな反応回数によりGaN結晶物が押圧ガス副噴射管及び原料ガス噴射管に付着し」てしまうことなどを裁判で訴えた。

ツーフロー方式で「量産は無理」

 当初日亜化学工業は,中村氏が発明したツーフロー方式を基に,上方から基板に向けて流す押圧ガスの最適な圧力を調整したMOCVD装置により高輝度青色LEDの製品化を進めていた。同社もこれは「せいぜいその(中村氏の)改良発明に当たるものでしかない」と認めている。だが,その後,同社は「量産性の低いツーフロー方式を諦め,平成9年(1997年)4月15日以後は,すべてのMOCVD装置につき,本件特許(404特許)発明とは別個の技術思想に基づく発明である被告現方法(現在量産工程で使用しているMOCVD装置)を実施して,高輝度青色LED及びLDの全製品を製造している」と主張する。

 こうした現在のMOCVD装置を日亜化学工業は内製したという。同社で高輝度青色LEDの量産工程に関わった小山稔氏は自著「青の奇跡」(白日社)でこう記す。「量産対応のMOCVD装置は,社長の陣頭指揮で社内製作が決定した。装置自体の製作に,自社内でも取り組むことになった。(中略)当然ながら,基礎実験の装置と量産装置とでは,考え方を変える必要もある。いわば「原型」とも言える(中村氏の)MOCVD装置は,実験・研究に徹底的に使用され,原型をとどめないほど改善しつくされていた。そこで,量産化を目標において,この装置を分解し,構造,部品の細部にわたって検討が加えられたのである。社内の生産技術部門の人々が,実験,研究者とチームを組んで,新規な日亜製のMOCVD装置を作り上げていった」。

 これに対して中村氏は「現在の(製膜)方法も404特許の延長線にある方法に間違いない」と反論する。

 だが,前出の書籍「『青色』に挑んだ男たち」の中で,当時ソニーの河合氏はこう発言している。「この(ツーフローMOCVD)装置はガスの微妙なバランスの上に成立しているので『プロセス・ウインドウ(窓)』(反応条件の許容範囲)が狭く,量産を目指したスケールアップが難しい装置」。

 産総研の奥村氏も「ツーフロー方式は正直トリッキーな方法であり,決してスマートな方法とはいえない。この方法では乱流が発生しやすく反応ガスの制御性に劣るからだ」と評価する。

 以上,GaNの技術に詳しい第三者の証言をまとめると「404特許は量産工程に向かず,GaNには404特許のほかに製膜方法が存在する。そのため,競合他社も他の研究者も404特許を必要としない」―ということになる。

 こうした特許を「基本特許」と判断し,競合他社にライセンスしたら「実施料率20%」が得られるとする東京地裁の判断に納得できないのは日亜化学工業ばかりではないだろう。

1 | 2 | 3