【発明の名称】 |
リニア空燃比センサの劣化診断装置 |
【発明者】 |
【氏名】宮腰 穂
【氏名】寺田 浩市
【氏名】宮本 浩二
【氏名】竹林 広行
|
【要約】 |
【課題】診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行すること。
【解決手段】所定の診断条件が成立したときにフィードバック制御系に外乱を出力する外乱発生手段を設ける。リニア空燃比センサの出力に基づいて前記リニア空燃比センサのむだ時間と時定数との少なくとも一方を判定パラメータとして演算する。外乱発生手段は、当該外乱発生手段による外乱の出力前における前記フィートバック制御系のフィードバック補正方向に外乱を出力する。 |
【特許請求の範囲】
【請求項1】 エンジンの排気ガス中の酸素濃度に基づいて、空燃比のフィードバック制御を実行するフィードバック制御系と、 前記フィードバック制御系に設けられ、前記排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサと、 リニア空燃比センサの出力に基づいて前記リニア空燃比センサのむだ時間と時定数との少なくとも一方を判定パラメータとして演算する判定パラメータ演算手段と、 演算された判定パラメータに基づいて前記リニア空燃比センサの劣化を判定する劣化判定手段と を備え、 所定の診断条件が成立したときに前記フィードバック制御系に外乱を出力する外乱発生手段を設け、この外乱発生手段は、当該外乱発生手段による外乱の出力前における前記フィートバック制御系のフィードバック補正方向に外乱を出力するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項2】 請求項1記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、前記フィードバック制御系に外乱を与えることにより排気性能の低下を来すか否かを判別する外乱可否判別手段を有し、この外乱可否判別手段が、外乱の出力によって排気性能の低下を来すと判断した場合には、診断用の外乱の出力を抑制するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項3】 請求項2記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、フィードバック補正量とフィードバック補正量の変化量の何れか一方が所定の値を超えると前記外乱可否判別手段が判定した場合には、当該フィードバック制御に対応させて、診断用の外乱を抑制するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項4】 請求項2または3記載のリニア空燃比センサの劣化診断装置において、 前記外乱可否判別手段は、フィードバック補正量の変化量および絶対値を可否判定のパラメータとして演算するとともに、フィードバック補正量の変化量が所定の値を超えるときは、フィードバック補正量の絶対値が許容範囲内であっても排気性能の低下を来すと判断するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項5】 請求項1から4の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、むだ時間の演算を終了した時点を起点として、予め設定された時定数演算期間内に時定数を演算するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項6】 請求項1から5の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、予め設定されたタイミングから前記リニア空燃比センサの出力を微分した微分値が所定のしきい値に達するまでの時間に基づいてむだ時間を演算するとともに、前記時定数演算期間中の前記微分値のピークに基づいて時定数を演算するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項7】 請求項1から6の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、前記時定数演算期間を調整する時定数演算期間調整手段を有しているものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項8】 請求項7項に記載のリニア空燃比センサの劣化診断装置において、 前記エンジンの運転状態を検出する運転状態検出手段を設け、 前記時定数演算期間調整手段は、前記運転状態検出手段が検出した運転状態に応じて前記時定数演算期間を調整するものである ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項9】 請求項1から8の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、予め設定された診断期間内に燃料噴射量をリッチ側に増量するリッチ側外乱とリーン側に減量するリーン側外乱とを複数回出力するものであり、 前記判定手段は、前記診断期間内に判定パラメータ演算手段が積算したリーン側の外乱に対する判定パラメータとリッチ側の外乱に対する判定パラメータとをそれぞれ平均して基準値と比較することにより、前記リニア空燃比センサの劣化を判定するものである ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項10】 請求項9記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、外乱の出力開始を起点としてカウントされるむだ時間演算期間内にむだ時間の演算ができなかった場合には、当該外乱に係る判定パラメータの演算をキャンセルするものであり、 前記判定手段は、前記診断期間内に演算された判定パラメータが予め設定された最小出力回数に満たない場合には、劣化判定を出力するものである ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項11】 請求項1から10の何れか1項記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、むだ時間の演算を終了した時点で外乱の生成をリセットするものであることを特徴とするリニア空燃比センサの劣化診断装置。
|
【発明の詳細な説明】【技術分野】 【0001】 本発明はリニア空燃比センサの劣化診断装置に関し、より詳細には、エンジンの排気系に設けられ、排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサの劣化を診断するリニア空燃比センサの劣化診断装置に関する。 【背景技術】 【0002】 従来、この種のリニア空燃比センサの劣化診断装置としては、例えば特許文献1に開示されている技術がある。この特許文献1に開示されている技術では、通常運転時では、PID動作によって空燃比のフィードバック制御を実行するとともに、診断時には、フィードバック制御系のD動作を禁止してPI動作に切り換えることにより、リニア空燃比センサの出力変動を拡大し、センサ劣化度合いが大きい程、応答周期が長くなることに基づいて、リニア空燃比センサの応答遅れを拡大して検出するようにしている。 【特許文献1】特許第3377336号公報 【発明の開示】 【発明が解決しようとする課題】 【0003】 特許文献1に開示されている装置では、リニア空燃比センサの出力変動を拡大しているのでリニア空燃比センサの劣化判定が容易になる反面、診断時にD動作を禁止してPI動作に切り換えているので、目標空燃比に対する追従性が低下する結果、診断時のエミッション低下が不可避になるという問題があった。 【0004】 本発明は上記課題に鑑みてなされたものであり、診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行することのできるリニア空燃比センサの劣化診断装置を提供することを課題としている。 【課題を解決するための手段】 【0005】 上記課題を解決するために、本発明は、エンジンの排気ガス中の酸素濃度に基づいて、空燃比のフィードバック制御を実行するフィードバック制御系と、前記フィードバック制御系に設けられ、前記排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサと、リニア空燃比センサの出力に基づいて前記リニア空燃比センサのむだ時間と時定数との少なくとも一方を判定パラメータとして演算する判定パラメータ演算手段と、演算された判定パラメータに基づいて前記リニア空燃比センサの劣化を判定する劣化判定手段とを備え、所定の診断条件が成立したときに前記フィードバック制御系に外乱を出力する外乱発生手段を設け、この外乱発生手段は、当該外乱発生手段による外乱の出力前における前記フィートバック制御系のフィードバック補正方向に外乱を出力するものであることを特徴とするリニア空燃比センサの劣化診断装置である。この態様では、リニア空燃比センサを「むだ時間+一次遅れ要素」として、むだ時間と時定数との少なくとも一方を判定パラメータとしているので、的確に劣化診断を実行することが可能になる。すなわち、リニア空燃比センサは、通常「むだ時間+一次遅れ要素」のプロセス伝達関数G(s) 【0006】 【数1】
【0007】 (但し、Lはむだ時間、τは時定数、Kはゲイン) に従うため、むだ時間と時定数との少なくとも一方を判定パラメータとして的確に劣化診断を実行することが可能となるのである。しかも、これらむだ時間や時定数を判定パラメータとして採用するに当たり、診断用の外乱を、フィートバック制御系がフィードバック補正する方向に出力することにしているので、診断のために出力された外乱がフィードバック制御系の制御によって相殺されるおそれもなくなり、精度の高い確実な劣化診断を実行することが可能になる。 【0008】 好ましい態様において、前記外乱発生手段は、前記フィードバック制御系に外乱を与えることにより排気性能の低下を来すか否かを判別する外乱可否判別手段を有し、この外乱可否判別手段が、外乱の出力によって排気性能の低下を来すと判断した場合には、診断用の外乱の出力を抑制するものである。この態様では、過度の外乱が診断時に出力されて排気性能の低下を防止することが可能になる。 【0009】 好ましい態様において、前記外乱発生手段は、フィードバック補正量とフィードバック補正量の変化量の何れか一方が所定の値を超えると前記外乱可否判別手段が判定した場合には、当該フィードバック制御に対応させて、診断用の外乱を抑制するものである。この態様では、外乱の出力は可能であるが、比較的フィードバック制御系によるフィードバック補正量の変化量または絶対値が大きい場合には、そのフィードバック補正量に対応させて外乱の変化量と絶対値の何れか一方が低減されるので、必要充分な診断用の外乱を出力しつつ排気性能の低下を抑制することが可能になるという利点がある。前記外乱を抑制する手段としては、外乱の絶対値または変化量を低減する方法が例示される。また、これらの物理量を出力パラメータとして用いた場合には、制御を容易且つ精緻に実行することが可能になる。 【0010】 好ましい態様において、前記外乱可否判別手段は、フィードバック補正量の変化量および絶対値を可否判定のパラメータとして演算するとともに、フィードバック補正量の変化量が所定の値を超えるときは、フィードバック補正量の絶対値が許容範囲内であっても排気性能の低下を来すと判断するものである。この態様では、外乱の出力可否を判定するパラメータとして、フィードバック補正量の変化量および絶対値を採用しているので、精度の高い良否判断が可能になるとともに、変化量が大きい場合には、絶対値が許容範囲内であっても外乱によって排気性能の低下を来すと判断されるので、高い勾配でフィードバック制御が実行されているときに外乱が加わることによって、短時間でオーバーシュートするのを防止することが可能になる。 【0011】 好ましい態様において、前記判定パラメータ演算手段は、予め設定されたタイミングから前記リニア空燃比センサの出力を微分した微分値が所定のしきい値に達するまでの時間に基づいてむだ時間を演算するとともに、前記時定数演算期間中の前記微分値のピークに基づいて時定数を演算するものである。この態様では、むだ時間、時定数をそれぞれリニア空燃比センサの出力の微分値に基づいて演算しているので、より精度の高い劣化診断を図ることが可能になる。 【0012】 好ましい態様において、前記判定パラメータ演算手段は、前記時定数演算期間を調整する時定数演算期間調整手段を有しているものである。この態様では、診断時の諸状況(例えば、運転時間やリニア空燃比センサの出力の挙動)に応じて適宜、時定数演算期間を調整し、適切に時定数を演算することが可能になる。 【0013】 好ましい態様において、前記エンジンの運転状態を検出する運転状態検出手段を設け、前記時定数演算期間調整手段は、前記運転状態検出手段が検出した運転状態に応じて前記時定数演算期間を調整するものである。この態様では、運転状態に拘わらず好適に時定数を演算することが可能になる。 【0014】 好ましい態様において、前記外乱発生手段は、予め設定された診断期間内に燃料噴射量をリッチ側に増量するリッチ側外乱とリーン側に減量するリーン側外乱とを複数回出力するものであり、前記判定手段は、前記診断期間内に判定パラメータ演算手段が積算したリーン側の外乱に対する判定パラメータとリッチ側の外乱に対する判定パラメータとをそれぞれ平均して基準値と比較することにより、前記リニア空燃比センサの劣化を判定するものである。この態様では、複数回外乱を出力して判定パラメータを演算し、その平均値によってリニア空燃比センサの劣化を判定しているので、より精度の高い劣化判定を実現することが可能になる。また、診断期間を設定し、その診断期間内に外乱を出力するようにしているので、必要以上に外乱を出力し、排気性能を低下させる恐れがない。また、診断期間を設定することにより、他の診断制御との整合性を容易にとることができ、設計の自由度を高めることが可能になる。 【0015】 好ましい態様において、前記判定パラメータ演算手段は、外乱の出力開始を起点としてカウントされるむだ時間演算期間内にむだ時間の演算ができなかった場合には、当該外乱に係る判定パラメータの演算をキャンセルするものであり、前記判定手段は、前記診断期間内に演算された判定パラメータが予め設定された最小出力回数に満たない場合には、劣化判定を出力するものである。この態様では、外乱の出力開始を起点としてむだ時間演算期間をカウントし、このむだ時間演算期間内にむだ時間の演算ができなかった場合には、その外乱に関する判定パラメータの演算がキャンセルされるので、ノイズ等によってむだ時間の演算ができなかった場合等、そのデータを排除し、精度の高い判定パラメータを得ることが可能になる。他方、前記診断期間内に演算された判定パラメータが予め設定された最小出力回数に満たない場合には、劣化判定を出力するので、僅かでも劣化の可能性があるリニア空燃比センサに対して不良判定を行うことにより、フェールセーフ機能を高めることが可能になる。通常、リニア空燃比センサが正常な場合には、診断期間内に必要な出力回数の演算が実行されるのに対し、リニア空燃比センサの劣化が進むと、フィードバックが発散しやすくなることから、むだ時間が検出されなくなり、判定パラメータの積算数が少なくなる。そのような場合には、排気性能の低下を抑止する観点から、劣化判定を下すことにより、より安全側な判定診断を行うこととしているのである。 【0016】 好ましい態様において、前記外乱発生手段は、むだ時間の演算を終了した時点で外乱の生成をリセットするものである。この態様では、リニア空燃比センサの劣化状態に応じて必要最小限の期間だけ外乱を出力させることが可能になる。このため、診断期間を可及的に短縮化できるとともに、むだ時間に基づく正確な劣化診断を実行することが可能になる。 【発明の効果】 【0017】 以上説明したように、本発明は、むだ時間と時定数との少なくとも一方を判定パラメータとして的確に劣化診断を実行することが可能になるとともに、これらむだ時間や時定数を判定パラメータとして採用するに当たり、診断用の外乱を、フィートバック制御系がフィードバック補正する方向に出力することにしているので、診断のために出力された外乱がフィードバック制御系の制御によって相殺されるおそれもなくなり、精度の高い確実な劣化診断を実行することが可能になる結果、診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行することができるという顕著な効果を奏する。 【発明を実施するための最良の形態】 【0018】 以下、添付図面を参照しながら本発明の好ましい実施の形態について説明する。 【0019】 図1は本発明の実施の一形態に係るエンジン10の系統図である。 【0020】 図1を参照して、本実施形態の劣化判定装置1に係るエンジン10には、複数の気筒11が設けられるとともに、各気筒11の内部には、図略のクランクシャフトに連結されたピストン12が嵌挿されることにより、その上方に燃焼室14が形成されている。エンジン10には、前記クランクシャフトのエンジン回転速度Neを検出するクランク角センサSW1が設けられている。 【0021】 シリンダヘッドには、前記気筒11毎に燃焼室14に向かって開口する吸気ポート15、排気ポート16がそれぞれ形成されているとともに、これらのポート15、16には、吸気弁17および排気弁18がそれぞれ装備されている。 【0022】 吸気ポート15には、吸気システム20が、排気ポート16には排気システム30がそれぞれ設けられている。 【0023】 吸気システム20は、吸入空気を浄化するエアクリーナ21を上流端に備えている。エアクリーナ21には、エレメント22が内蔵されている。エアクリーナ21の下流側には、スロットルボディ23が設けられている。スロットルボディ23には、吸気システム20内を流通する吸入空気量Qaを調整するスロットルバルブ24が設けられている。本実施形態において、スロットルバルブ24は、電子制御式であり、そのアクチュエータ124によって開弁量が制御されるようになっている。 【0024】 スロットルボディ23の下流側には、インテークマニホールド25が設けられ、このインテークマニホールド25の下流端に設けられた分岐吸気通路26が対応する気筒11の吸気ポート15に接続されている。図示の例では、分岐吸気通路26に燃料噴射弁27が設けられている。この吸気システム20には、エアクリーナ21とスロットルボディ23の間にエアフローセンサSW2が配置されている。エアフローセンサSW2は、エレメント22に濾過された吸入空気の吸入空気量Qaを出力するものである。さらに、スロットルボディ23には、当該スロットルバルブ24のスロットル開度TVOを検出するスロットルセンサSW3が設けられている。 【0025】 排気システム30は、排気ポート16に接続されるエキゾーストマニホールド31と、このエキゾーストマニホールド31の下流側に配置され、当該エキゾーストマニホールド31内に排出された既燃ガスを浄化する三元触媒32と、この三元触媒32の上流側に配置されたリニア空燃比センサSW4とが設けられている。リニア空燃比センサSW4は、既燃ガスから酸素濃度に概ね比例する信号を出力することにより、空燃比A/Fのフィードバック制御を実行するためのものである。本実施形態において、エンジンの目標空燃比A/Fは、原則として理論空燃比(λ=1)に設定される。 【0026】 さらに本実施形態においては、図略のアクセルの踏み込み量を検出するアクセル開度センサSW5が設けられている。 【0027】 上述した各センサSW1〜SW5並びに燃料噴射弁27は、コントロールユニット100に接続されることにより、空燃比A/Fのフィードバック制御系を構成している。 【0028】 図2は本実施形態に係る劣化判定装置1の制御回路ブロック図であり、図3は図2の制御回路によって実現される劣化判定装置1のブロック線図である。 【0029】 まず、図2を参照して、コントロールユニット100は、CPU101、ROMで具体化される補助記憶装置102、RAMで具体化される主記憶装置103を含んでいる。上述した各センサSW1〜SW5は、入力要素としてCPU101に接続されており、それぞれ対応する信号Ne、Qa、TVO、PF、AOFをCPU101に出力するように構成されている。 【0030】 CPU101は、補助記憶装置102に記憶されているプログラムに基づいて、各センサSW1〜SW5の出力した信号Ne、Qa、TVO、PF、AOFを処理し、出力要素として接続されている燃料噴射弁27やアクチュエータ124を制御して空燃比A/Fをフィードバック制御するように構成されている。 【0031】 補助記憶装置102には、詳しくは後述する劣化診断プログラムが記憶されている。 【0032】 主記憶装置103は、補助記憶装置102に記憶されたプログラムを実行する過程で、各センサSW1〜SW5が出力した信号Ne、Qa、TVO、PF、AOFやこれに基づいて演算された演算値を記憶するように構成されている。 【0033】 図3を参照して、コントロールユニット100は、同図に示すフィードバック制御系110を構成している。このフィードバック制御系110は、目標空燃比A/F(λ=1)を目標値DVとする基準入力要素111と、基準入力要素111の出力した基準入力IPに補正信号SSを出力して補正をかける補正要素112と、補正要素112に補正されたフォワード量BSにリニア空燃比センサSW4からの出力(実空燃比)PFとを加算した動作信号ASに基づいて、フィードバック補正量FQを決定し、このフィードバック補正量FQに基づいて、操作量(燃料噴射量)OVを決定するフィードバック要素114とを含んでいる。 【0034】 補正要素112とフィードバック要素114との間には、リニア空燃比センサSW4の出力(実空燃比)PFが入力されるようになっており、フィードバック要素114は、基準入力要素111の基準入力IPから補正要素112の補正信号SSを差し引き、さらにフォワード量BSから出力(実空燃比)PFを差し引いた動作信号ASを受けて、フィードバックゲインKを含む所定の伝達関数G(S)に基づき、フィードバック補正量FQを決定し、操作量OVを出力するように構成されている。 【0035】 次に、本実施形態に係るフィードバック制御系110には、外乱LR、RLを交互に発生させる外乱発生手段116が機能的に構成されている。この外乱発生手段116は、補助記憶装置102に記憶されたプログラムが実行されることにより、次に説明するリニア空燃比センサSW4の劣化診断時において動作するものである。外乱発生手段116は、燃料噴射量に外乱LR、RLを与えることによって、過渡的に空燃比A/Fをリッチ側またはリーン側に変更するように構成されている。以下の説明では、リッチ側に空燃比A/Fを変化させるときの外乱はLRと表記し、リーン側に空燃比A/Fを変化させるときの外乱はRLと表記する。外乱発生手段116が出力した外乱LR、RLの出力回数NLR、NRLは、それぞれ主記憶装置103に記憶されるようになっている。これら出力回数NLR、NRLは、予め劣化診断プログラムにおいて、それぞれ等量の所要回数Nendだけ実行するように設定されている。これにより、診断によって意図的に変更された空燃比A/Fが中和され、フィードバック要素114によって制御されている空燃比A/Fが必要以上に乱されないようにして、エミッションの低下を阻止するようにしている。 【0036】 次に、補助記憶装置102に記憶されている制御マップM20(図6参照)、M21(図7参照)について、図4および図5を参照しながら説明する。 【0037】 図4は、フィートバック補正量FQと、外乱発生手段116が外乱LR、RLを出力する際に補正されるべき補正値DQおよび外乱との関係を示すグラフである。また、図5は、実験値に基づいて作成された吸入空気量Qaと時定数演算期間Tdamの関係を示すグラフである。 【0038】 まず、図4を参照して、詳しくは後述するように、リニア空燃比センサSW4の劣化診断を実行する際、外乱発生手段116は、当該外乱発生手段116による外乱LR、RLの出力前におけるフィートバック制御系110のフィードバック補正方向(リーンからリッチまたはリッチからリーン)に外乱LR、RLを出力するように構成されている。換言すれば、フィードバック補正量FQを増幅することによって、フィードバック要素114の制御により、外乱発生手段116が出力した外乱LR、RLが相殺されないようにしているのである。このため、三元触媒32によっても排気性能を低減させる可能性のある所定の限界値をフィードバック補正の基準値FQLTとした場合、この基準値FQLTをフィードバック補正量FQの絶対値|FQ|が超えていると、外乱発生手段116の出力(外乱LR、RLの変化量または絶対値)Dによって、排気性能を低下させるおそれがある。そこで本実施形態では、詳しくは図6のステップS29で説明するように、フィードバック要素114が出力する空燃比フィードバック補正量FQの絶対値|FQ|に応じて外乱LR、RLの出力Dを低減するように、外乱補正量DQを実験等により求めて図4のグラフに基づく制御マップM20を作成し、補助記憶装置102に記憶している。また、フィードバック補正量FQの絶対値|FQ|が基準値FQLTを超えている場合には、後述するように、外乱LR、RLの出力が不可となるような設定がなされている(図6のステップS27参照)。なお、別の実施形態として、フィードバック補正量FQの変化量dFQを基準となる限界変化量dFQLTと比較し、外乱の変化量を補正する構成を採用してもよい。その場合の基準値としては、例えば、±25%/sec以内が好適な限界変化量dFQLTとなる。 【0039】 次に、図5を参照して、補助記憶装置102に記憶されている劣化診断プログラムは、リニア空燃比センサSW4の出力(実空燃比)PFに基づいてむだ時間L、時定数τを演算するのであるが、時定数τを演算する際、演算に必要な時間はエンジン10の吸入空気量Qaに依存する。そこで、本実施形態では、図5のようなグラフに基づく制御マップM21を作成し、この制御マップM21に基づいて、必要充分な時定数演算期間Tdamを設け、時定数τを演算することとしている。 【0040】 図6ないし図8は本実施形態における劣化診断プログラムのフローチャートである。また図9および図10は図6ないし図8のフローチャートを実行することによって得られた信号のタイミングチャートである。 【0041】 まず、図6並びに図9および図10を参照して、劣化診断プログラムが実行されると、CPU101は、空燃比フォワード量BSを演算する(ステップS20)。上述したように、ここでは、空燃比A/Fがλ=1になるように目標値DVが設定されているとともに、この目標値DVに対応するように、基準入力要素111からの基準入力IPと補正要素112からの補正信号SSとの演算結果がフォワード量BSとして算出されることになる。 【0042】 次に、空燃比フィードバック補正量FQがフィードバック要素114によって演算される(ステップS21)。この演算値は、前記フォワード量BSと、リニア空燃比センサSW4の出力(実空燃比)PFとに基づいて、PID動作に基づき演算されるものである。 【0043】 次いで、燃料噴射量、すなわち操作量OVが決定される(ステップS22)。このような過程を経て、フィードバック制御系110は、空燃比A/Fがλ=1になるように、操作量OVを制御している。 【0044】 ここで、コントロールユニット100は、エンジン10の運転中において、診断条件が成立するのを待機する(ステップS23)。ここで診断条件とは、 (1) クランク角センサSW1で検出されるエンジン回転速度Neの変化量が所定変化量であり、 (2) スロットルセンサSW3によって検出されるスロットル開度TVOの変化量が所定変化量以下であり、且つ (3) CE=Qa/Neで演算される充填効率CEの変化量が所定変化量以下である という条件を全て満たすいわゆる定常運転時であることをいう。 【0045】 仮に加速時等、診断条件を満たさない場合には、診断条件を満たすまでステップS20に復帰する。他方、診断条件が成立している場合には、診断期間Tdiaが設定され(ステップS24)、診断期間Tを経過した場合には、図12に示す劣化診断判定処理に移行する(ステップS25)。エンジン10の診断処理は、リニア空燃比センサSW4のみならず、数項目を短時間で処理することが必要であるため、診断期間Tdiaを設け、この診断期間Tdiaを経過した場合には、強制的に外乱LR、RLの出力による診断処理を終了することにより、必要充分な時間で的確な劣化診断を図るようにしているのである。 【0046】 診断期間Tdiaの計測が開始され、診断期間Tdiaが満了する前においては、まず、最新のフィードバック補正量FQから外乱LR、RLの出力可否判定をするためのパラメータとして、絶対値|FQ|および変化量dFQを演算し(ステップS26)、演算された絶対値|FQ|に基づいて、診断用の外乱LR、RLを加えた場合、排気性能に悪影響を与えるか否かを判定する(ステップS27)。具体的には、排気性能の低下を抑制可能な限界となるフィードバック限界値FQLTを設定し、ステップS26で演算されたフィードバック補正量FQ絶対値|FQ|がフィードバック限界値FQLT以下であるか否かを判別し、以下であれば、外乱LR、RLの出力が可能と判定される。但し、本実施形態においては、このステップS27において、フィードバック補正量FQ絶対値|FQ|がフィードバック限界値FQLT以下であった場合であっても、さらにステップS26で演算された変化量dFQが基準変化量dFQLTと比較され(ステップS28)、変化量dFQが基準変化量dFQLTよりも大きい場合には、ステップS25に制御をリターンし、外乱LR、RLの出力を停止するように設定されている。このような設定を行うことにより、フィードバック補正量FQが急速に変化する場合に外乱LR、RLを出力して、操作量OVが短時間でオーバーシュートするのを回避しているのである。このように本実施形態では、コントロールユニット100(さらには外乱発生手段116)は、外乱LR、RLが出力される前のフィードバック制御系110によるフィードバック制御が、外乱LR、RLを与えることにより排気性能の低下を来すか否かを判別する外乱可否判別手段を機能的に構成している。 【0047】 ステップS27において、外乱LR、RLを出力できないと判定された場合(ステップS27の判定がNOの場合)、制御はステップS25にリターンする。他方、外乱LR、RLの出力が可能であると判定された場合(ステップS27の判定がNOの場合)、コントロールユニット100は、図4で説明したグラフに基づく制御マップM20から補正量を読み出し、最終的な外乱LR、RLを演算するようにしている(ステップS29)。これにより、目標空燃比を維持しつつより大きな外乱LR、RLを出力して、確実な劣化診断を実行することが可能となる。 【0048】 次いで、フィードバック補正量FQが正負であるかを判別し(ステップS30)、フィードバック補正量FQが0以上であれば、リーンからリッチへ外乱LRを加算し、0未満であれば、リッチからリーンへ外乱RLを減算するように構成されている(ステップS31、S32)。次いで、外乱RL、LRが加味された状態で、操作量OVが出力される(ステップS33)。 【0049】 これにより、図9に示すように、運転時にリーンからリッチ側に外乱LRが生じた場合、制御の方向は、リッチからリーンになるので、外乱発生手段116は、リッチからリーンに外乱RLを減算し、より、リーン側にフィードバック補正量FQを小さくする。この結果、センサSW4の出力(実空燃比)PFも、リーン側(マイナス側)に増幅され、より確実に劣化診断を実行することができるようになる。また、図10に示すように、運転時にリッチからリーン側に外乱RLが生じた場合、制御の方向は、リーンからリッチになるので、外乱発生手段116は、リーンからリッチに外乱RLを加算し、より、リッチ側にフィードバック補正量FQを大きくする。この結果、センサSW4の出力(実空燃比)PFも、リッチ側(プラス側)に増幅され、より確実に劣化診断を実行することができるようになる。フィードバック制御の方向を検出する手法としては、フィードバック補正量FQの傾き(微分値)を演算することにより、求めることが可能である。 【0050】 図7を参照して、次に、本実施形態では、外乱発生手段116が外乱LR(またはRL)を出力したタイミングを起点として、コントロールユニット100は、むだ時間演算期間Tdedの計測をスタートする(ステップS40)。むだ時間Lは、根幹的な制御パラメータであり、その精度を高めることは、制御理論上、極めて重要な意義を有する。そのため、たまたま不随意な外乱等の影響を受けて所定時間内にむだ時間Lの演算ができなかった場合には、データの検出不良として、むだ時間Lの演算精度を高めるようにしているのである。他方、リニア空燃比センサSW4の劣化によりむだ時間Lの遅れが所定量を超えている場合には、フィードバックゲインKを小さくすることによって、消極的に対応することは可能であるものの、もはや適切なフィードバック制御を行うことはできなくなる。そこで、本実施形態では、上述のようなデータの検出不良が多発する場合には、後述するように劣化判定を下すこととしている。さらに、上述したように、外乱LR、RLを出力することなく劣化診断を実行する場合でも、むだ時間演算期間Tdedを設定することにより、劣化診断の遅延を防止することが可能になる。むだ時間演算期間Tdedの設定範囲としては、診断用の外乱LR、RLの間隔が、フィードバック補正量FQの場合、例えば0.1secの間、常に±1%となるように、また、フィードバック補正量FQの変化量dFQの場合、例えば0.1secの間、常に±1%/secとなるように設定される。 【0051】 ステップS40のむだ時間演算期間Tdedの計測がスタートすると、コントロールユニット100のCPU101は、入力された実空燃比PFの微分値DO2を演算する(ステップS41)。これにより、リニア空燃比センサSW4の出力した実空燃比PFが外乱LR(またはRL)によって、または所定の運転状態において、どのように変化するか把握することが可能になる。このように本実施形態のCPU101は、リニア空燃比センサSW4の出力(実空燃比)PFを微分した微分値DO2を出力する微分手段を機能的に構成している。 【0052】 ここで、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」である。そこで、本実施形態では、むだ時間Lが経過するのを待機し、むだ時間Lの終了を検出して外乱発生手段116による外乱LR、RLをリセットするようにしている。かかる制御を実行するために、CPU101は、図9または図10に示すように、演算された微分値DO2について、所定のしきい値±ThDに関し、−DO2≦−ThDまたは+DO2≧+ThDとなるのを待機する(ステップS42)。ここで、仮にステップS27で演算された微分値DO2がしきい値の絶対値|ThD|以下の場合、本実施形態においては、まず、むだ時間演算期間Tded内であるか否かが判定され(ステップS43)、むだ時間演算期間Tded内であれば、ステップS41に戻って処理を繰り返すとともに、むだ時間演算期間Tdedを経過している場合には、外乱発生手段116による外乱LR、RLをリセットし(ステップS44)、ステップS25に戻ることとしている。これにより、外乱等によるむだ時間Lの不良検出データを排除して、劣化診断の精度を高めるとともに、診断期間Tdiaが終了するまでにこのような不良検出データが多発する場合には、劣化診断を下すことができるようになっている。 【0053】 他方、ステップS42の判別で、演算された微分値DO2がしきい値の絶対値|ThD|を越えた場合には、リニア空燃比センサSW4のむだ時間Lを演算し(ステップS45)、外乱発生手段116による外乱LR、RLをリセットする(ステップS46)。このように、むだ時間Lの演算を終了した時点で外乱発生手段116による外乱LR、RLをリセットすることにより、必要以上に外乱LR、RLが出力されなくなり、目標空燃比を維持したまま劣化診断を実行することが可能になる。 【0054】 次に、本実施形態では、この外乱LR、RLのリセット時に、時定数演算期間Tdamの計測を開始するように構成されている(ステップS47)。この時定数演算期間Tdamもまた、劣化診断を必要充分な時間で実行するために設定されるものである。上述したように、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」として扱うことができるものであるため、むだ時間Lを演算することにより、リニア空燃比センサSW4の時定数τを予測することが可能になる。従って、ステップS33において時定数演算期間Tdamを設定し、この時定数演算期間Tdam内にて時定数τを演算することにより、必要最小限の時間で正確な時定数τを求めることとしているのである。 【0055】 次に、この時定数演算期間Tdamについて説明する。 【0056】 図11は吸入空気量Qaと微分値との関係を示すグラフであり、(A)は低負荷運転時、(B)は高負荷運転時を示している。 【0057】 図11(A)(B)を参照して、エンジン10の運転状態が低負荷運転時においては、エンジン10の吸入空気量Qaは少ないため、排気流速が遅く、むだ時間Lの遅れが大きくなり、リニア空燃比センサSW4の出力(実空燃比)PFは、緩やかな変化特性を示す。これに対し、高負荷運転時においては、吸入空気量Qaが多いため、排気流速が速く、むだ時間Lの遅れが小さくなり、リニア空燃比センサSW4の出力(実空燃比)PFも急峻な変化特性を示す。従って、図5で説明したように、実験等で、時定数演算期間Tdamを吸入空気量Qa(或いはエンジン負荷)に応じて変動するように制御マップM21を定めておき、この制御マップM21に基づいて時定数演算期間Tdamを決定することにより、極めて好適な劣化診断処理を実行することが可能になる。 【0058】 図7に戻って、時定数演算期間Tdamが設定されると、ステップS41で演算された微分値DO2のピーク値DO2PKが演算される(ステップS48)。ここで本実施形態においては、この演算の後、時定数演算期間Tdamを経過しているか否かが判定され(ステップS49)、この時定数演算期間Tdamにてピーク値DO2PKの演算が繰り返される。これにより、制御マップM21に基づいて設定された適切な時定数演算期間Tdamにて微分値DO2のピーク値DO2PK、すなわち時定数τを必要充分な時間内に演算することが可能になる。 【0059】 時定数演算期間Tdamを過ぎると、演算されたピーク値DO2PKから時定数τが演算される(ステップS50)。上述したように、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」として扱うことができるものであるため、時定数演算期間Tdam内における微分値DO2のピーク値DO2PKを演算することにより、時定数τを求めることが可能になる。 【0060】 図8を参照して、時定数τの演算が終了すると、CPU101は、外乱発生手段116が生成した外乱が、燃料を減量するものであったか、増量するものであったかを判定し(ステップS51)、外乱が減量方向の場合はRLとして、増量の場合はLRとして、それぞれ劣化検出値(演算されたむだ時間L、時定数τ)を主記憶装置103に保存し(ステップS52、S53)、主記憶装置103に記憶されている出力回数NLR、NRLをインクリメントする(ステップS54、S55)。 【0061】 次いで各外乱LR、RLについて、所要の診断回数NENDを終了したか否かが判定され(ステップS56、S57)、何れかの出力回数NLR、NRLが所要の診断回数NENDに満たない場合には、ステップS22に戻って処理を繰り返し、双方の出力回数NLR、NRLが終了している場合には、劣化判定処理に移行する。 【0062】 図12は劣化判定処理の詳細を示すフローチャートである。 【0063】 図12を参照して、ここでは、劣化判定を行うために、むだ時間Lと時定数τの和を過渡時間Tとして定義している。尤も、過渡時間Tは、むだ時間Lのみ、或いは時定数τのみであってもよいことはいうまでもない。 【0064】 ステップS43までの処理が終了すると、CPU101は、まず、カウントされた外乱LR、RLの出力回数NLR、NRLがそれぞれ所定の最小値Nmin以上であるか否かを判定し(ステップS209、S210)、最小値Nminに満たない場合には、直ちに過渡時間遅れと判定する(ステップS217、S219)。通常、リニア空燃比センサSW4が正常な場合には、診断期間Tdia内に必要な出力回数NLR、NRLの演算が実行されるのに対し、リニア空燃比センサSW4の劣化が進むと、フィードバックが発散しやすくなることから、むだ時間Lが検出されなくなり、判定パラメータの積算数が少なくなる。そのような場合には、排気性能の低下を抑止する観点から、劣化判定を下すことにより、僅かでも劣化の可能性があるリニア空燃比センサに対してより安全側な判定診断(すなわち不良判定)を行うことにより、フェールセーフ機能を高めているのである。この結果、診断期間Tdiaの間において、図7のステップS42からS44の処理により、むだ時間Lが検出されなかった場合が多発したときには、劣化判定が下されることになる。 【0065】 カウントされた外乱LR、RLの出力回数NLR、NRLがそれぞれ所定の最小値Nmin以上である場合、CPU101は、リッチ側の外乱LRとリーン側の外乱RLに係る平均過渡時間TLR、TRLをそれぞれ演算する(ステップS211)。次いで、両平均過渡時間TLR、TRLの絶対値の差を演算し、その値が所定のしきい値ThBを越えていないかどうか判定する(ステップS212)。各平均過渡時間TLR、TRLにおいて、絶対値の差が大きい場合には、フィードバック要素114による空燃比制御がリッチ側またはリーン側にずれてしまうので、そのようなずれを防止するために、両平均過渡時間TLR、TRLの絶対値の差が演算されている。 【0066】 仮に両平均過渡時間TLR、TRLの絶対値の差がしきい値ThB以下の場合、今度は、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えているか否かが判定される(ステップS213)。両平均過渡時間TLR、TRLの絶対値の和が大きい場合には、フィードバック制御が過補正になり、制御が緩慢になって発散しやすくなるからである。 【0067】 仮に、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThA以下の場合には、過渡時間Tについて正常と判定される(ステップS214)。他方、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えている場合には、リニア空燃比センサSW4の劣化がリッチ側でもリーン側でも起きていると判定される(ステップS215)。 【0068】 他方、ステップS212において、両平均過渡時間TLR、TRLの絶対値の差がしきい値ThBを越えている場合、リッチ側の平均過渡時間TLRとリッチ側のしきい値ThRとが比較されてリッチ側で過渡時間遅れが生じているか否かが判定され(ステップS216)、しきい値ThRを越えている場合には、リッチ側過渡時間遅れが生じていると判定される(ステップS217)。また、平均過渡時間TLRがしきい値ThR以下の場合には、さらにリーン側の平均過渡時間TRLとリーン側のしきい値ThLとが比較され、リーン側で過渡時間遅れが生じているか否かが判定される(ステップS218)。リーン側の平均過渡時間TRLがしきい値ThLを越えている場合には、リーン側過渡時間遅れが生じていると判定され(ステップS219)、しきい値ThL以内である場合には、正常判定がなされる。なおしきい値ThB、ThAの設定によっては、ステップS218を省略し、ステップS216でNOと判定された場合には、そのままステップS219の判定を実行するようにしてもよい。 【0069】 そして、ステップS214、S215、S217、S219の何れかが終了すると、処理が終了する。 【0070】 以上説明したように本実施形態においては、むだ時間Lと時定数τとを判定パラメータとしているので、空燃比センサを「むだ時間+一次遅れ要素」として、的確に劣化診断を実行することが可能になる。しかも、これらむだ時間Lや時定数τを判定パラメータとして採用するに当たり、診断用の外乱LR、RLを、フィートバック制御系110がフィードバック補正する方向に出力することにしているので、診断のために出力された外乱LR、RLがフィードバック制御系110の制御によって相殺されるおそれもなくなり、精度の高い確実な劣化診断を実行することが可能になる。 【0071】 また、本実施形態では、コントロールユニット100が、フィードバック制御系110に外乱LR、RLを与えることにより排気性能の低下を来すか否かを判別する外乱可否判別手段を機能的に有し、この外乱可否判別手段が、外乱の出力によって排気性能の低下を来すと判断した場合には、診断用の外乱LR、RLの出力を停止するものである。このため本実施形態では、過度の外乱LR、RLが診断時に出力されて排気性能の低下を防止することが可能になる。 【0072】 また、本実施形態では、図4の制御マップM20並びに図6のステップS29で説明したように、所定量の外乱の出力によっては、外乱LR、RL出力後のフィードバック制御が排気性能の低下を来すと外乱可否判別手段が判定した場合には、当該フィードバック制御に対応させて、診断用の外乱LR、RLの出力パラメータ(フィードバック補正量FQの絶対値|FQ|または変化量dFQ)を低減するものである。このため本実施形態では、外乱LR、RLの出力は可能であるが、比較的フィードバック制御系110によるフィードバック補正量FQの変化量dFQまたは絶対値|FQ|が大きい場合には、そのフィードバック補正量FQに対応させて外乱LR、RLの変化量dFQと絶対値の何れか一方が低減されるので、必要充分な診断用の外乱LR、RLを出力しつつ排気性能の低下を抑制することが可能になるという利点がある。 【0073】 また、本実施形態では、図6のステップS27、S28で説明したように、フィードバック補正量FQの変化量dFQおよび絶対値|FQ|を可否判定のパラメータとして演算しているとともに、外乱可否判別手段は、フィードバック補正量FQの変化量dFQが所定の基準値dFQLTを超えるときは、フィードバック補正量FQの絶対値|FQ|が許容範囲内(すなわち|FQ|≦FQLTの場合)であっても排気性能の低下を来すと判断するものである。このため本実施形態では、高い勾配でフィードバック制御が実行されているときに外乱LR、RLが加わることによって、短時間でオーバーシュートするのを防止することが可能になる。 【0074】 また、本実施形態は、予め設定された所定のタイミング(ステップS27、S28で外乱の出力が不可と判断されたタイミング、または外乱発生手段116が外乱LR(またはRL)を出力したタイミング)を起点として、予め設定された時定数演算期間Tdam内に時定数τを演算するものである。このため、本実施形態では、必要最低限の時間で、時定数τを演算し、不随意な外乱LR、RLによる誤判定を防止することが可能になる。また、時定数演算期間Tdamを設定し、この時定数演算期間Tdam内にて時定数τを演算することにより、必要最小限の時間で正確な時定数τを求めることが可能になる。さらに、制御理論上、最も重要な「むだ時間L」を判定パラメータとし、これによって、リニア空燃比センサSW4の劣化判定を行っているので、ゲインKを下げる等、実質的に消極的な対処法しかないリニア空燃比センサSW4の劣化検出が可及的に迅速化し、排気性能の低下を未然に抑止することが可能になる。 【0075】 また、本実施形態では、外乱LR、RLの出力開始から、リニア空燃比センサSW4の出力を微分した微分値DO2が所定のしきい値±ThDに達するまでの時間に基づいてむだ時間Lを演算するとともに、時定数演算期間Tdam中の微分値DO2のピークに基づいて時定数τを演算するものである。このため本実施形態では、むだ時間L、時定数τをそれぞれリニア空燃比センサSW4の出力の微分値DO2に基づいて演算しているので、より精度の高い劣化診断を図ることが可能になる。 【0076】 また、本実施形態では、制御マップM21を設けることにより、時定数演算期間Tdamを調整する手段を有している。このため本実施形態では、診断時の諸状況(例えば、運転時間やリニア空燃比センサSW4の出力の挙動)に応じて適宜、時定数演算期間Tdamを調整し、適切に時定数τを演算することが可能になる。 【0077】 また、本実施形態では、コントロールユニット100が、エンジン10の運転状態を検出する運転状態検出手段を機能的に構成しているとともに、この運転状態検出手段としてのコントロールユニット100が検出した運転状態に応じて時定数演算期間Tdamを調整するものである。このため本実施形態では、運転状態に拘わらず好適に時定数τを演算することが可能になる。 【0078】 また、本実施形態では、予め設定された診断期間Tdia内に燃料噴射量をリッチ側に増量するリッチ側外乱LR、RLとリーン側に減量するリーン側外乱LR、RLとを交互に同じ出力回数だけ複数回出力し、診断期間Tdia内に積算されたリーン側の外乱LR、RLに対する判定パラメータ(過渡時間T)とリッチ側の外乱LR、RLに対する判定パラメータとをそれぞれ平均して基準値ThA、ThB、ThR、ThLと比較することにより、リニア空燃比センサSW4の劣化を判定するものである。このため本実施形態では、より精度の高い劣化判定を実現することが可能になる。また、診断期間Tdiaを設定し、その診断期間Tdia内に外乱LR、RLを出力するようにしているので、必要以上に外乱LR、RLを出力し、排気性能を低下させる恐れがない。また、診断期間Tdiaを設定することにより、他の診断制御との整合性を容易にとることができ、設計の自由度を高めることが可能になる。 【0079】 また、本実施形態では、外乱LR、RLの出力開始を起点としてカウントされるむだ時間演算期間Tded内にむだ時間Lの演算ができなかった場合には、当該外乱LR、RLに係る判定パラメータの演算をキャンセルするものであり、判定手段は、診断期間Tdia内に演算された判定パラメータが予め設定された最小出力回数Nminに満たない場合には、劣化判定を出力するものである。このため本実施形態では、外乱LR、RLの出力開始を起点としてむだ時間演算期間Tdedをカウントし、このむだ時間演算期間Tded内にむだ時間Lの演算ができなかった場合には、その外乱LR、RLに関する判定パラメータの演算がキャンセルされるので、ノイズ等によってむだ時間Lの演算ができなかった場合等、そのデータを排除し、精度の高い判定パラメータを得ることが可能になる。他方、診断期間Tdia内に演算された判定パラメータが予め設定された最小出力回数Nminに満たない場合には、劣化判定を出力するので、僅かでも劣化の可能性があるリニア空燃比センサSW4に対して不良判定を行うことにより、フェールセーフ機能を高めることが可能になる。 【0080】 また本実施形態においては、時定数τの演算に際し、むだ時間Lの演算が終了した時点で外乱LR、RLの生成がリセットされるので、リニア空燃比センサSW4の劣化状態に応じて必要最小限の期間だけ外乱LR、RLを出力させることが可能になる。このため、診断期間Tdiaを可及的に短縮化できるとともに、むだ時間Lに基づく正確な劣化診断を実行することが可能になる。 【0081】 このように本実施形態においては、「むだ時間+一次遅れ要素」としてリニア空燃比センサSW4の劣化診断を実行することができるので、目標空燃比の変更が不要になるとともに、極めて高い精度で的確な劣化診断を行うことができるという顕著な効果を奏する。 【0082】 上述した実施形態は本発明の好ましい具体例に過ぎず本発明は上述した実施形態に限定されない。例えば、むだ時間L、時定数τを求める方法としては、必ずしも微分値を演算する方法である必要はなく、リニア空燃比センサSW4の出力値や出力期間等から直接判定する方法を採用してもよい。また、図6のステップS27、S28において、外乱の出力が不可である場合、ステップS25に復帰させてフィードバック補正量FQが小さくなるのを待機するようにしてもよい。 【0083】 その他、本発明の特許請求の範囲内で種々の変更が可能であることはいうまでもない。 【図面の簡単な説明】 【0084】 【図1】本発明の実施の一形態に係るエンジンの系統図である。 【図2】本実施形態に係る劣化判定装置の制御回路ブロック図である。 【図3】図2の制御回路によって実現される劣化判定装置のブロック線図である。 【図4】フィートバック補正量と、外乱発生手段が外乱を出力する際に補正されるべき補正値および外乱との関係を示すグラフである。 【図5】実験値に基づいて作成された吸入空気量と時定数演算期間の関係を示すグラフである。 【図6】本実施形態における劣化診断プログラムのフローチャートである。 【図7】本実施形態における劣化診断プログラムのフローチャートである。 【図8】本実施形態における劣化診断プログラムのフローチャートである。 【図9】図6ないし図8のフローチャートを実行することによって得られた信号のタイミングチャートである。 【図10】図6ないし図8のフローチャートを実行することによって得られた信号のタイミングチャートである。 【図11】吸入空気量と微分値との関係を示すグラフであり、(A)は低負荷運転時、(B)は高負荷運転時を示している。 【図12】劣化判定処理の詳細を示すフローチャートである。 【符号の説明】 【0085】 1 劣化判定装置 10 エンジン 20 吸気システム 27 燃料噴射弁 30 排気システム 32 三元触媒 100 コントロールユニット(微分手段、判定パラメータ演算手段、劣化判定手段、外乱可否判定手段、時定数演算期間調整手段の一例) 110 フィードバック制御系 116 外乱発生手段 FQ フィードバック補正量 dFQ 変化量 M21 マップ DO2 微分値 DO2PK 微分ピーク値 L むだ時間 NEND 診断回数 NLR、NRL 出力回数 PF 出力(実空燃比) Qa 吸入空気量 LR、RL 外乱 SW1 クランク角センサ SW2 エアフローセンサ(吸入空気量検出手段の一例) SW3 スロットルセンサ SW4 リニア空燃比センサ SW5 アクセル開度センサ T 過渡時間 ThA、ThB、ThC、dThC、+ThD、−ThD、ThL、ThR しきい値 TRL、TLR 平均過渡時間 Tdam 時定数演算期間 TVO スロットル開度 τ 時定数
|
【出願人】 |
【識別番号】000003137 【氏名又は名称】マツダ株式会社
|
【出願日】 |
平成18年1月27日(2006.1.27) |
【代理人】 |
【識別番号】100067828 【弁理士】 【氏名又は名称】小谷 悦司
【識別番号】100096150 【弁理士】 【氏名又は名称】伊藤 孝夫
【識別番号】100099955 【弁理士】 【氏名又は名称】樋口 次郎
|
【公開番号】 |
特開2007−198306(P2007−198306A) |
【公開日】 |
平成19年8月9日(2007.8.9) |
【出願番号】 |
特願2006−19279(P2006−19279) |
|