【発明の名称】 |
リニア空燃比センサの劣化診断装置 |
【発明者】 |
【氏名】宮腰 穂
【氏名】寺田 浩市
【氏名】宮本 浩二
【氏名】竹林 広行
|
【要約】 |
【課題】診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行すること。
【解決手段】目標空燃比を変更することなく、強制的に外乱を出力し、その検出値から「むだ時間+一次遅れ要素」としてのリニア空燃比センサのむだ時間L、時定数τを演算する。この演算に際し、予め時定数遅れ量τdyを検出し、この時定数遅れ量τdyに基づいて、演算されたむだ時間Lpreを補正する。他方、むだ時間Lpreの演算を終了した時点で外乱の生成をリセットする。 |
【特許請求の範囲】
【請求項1】 エンジンの排気ガス中の酸素濃度に基づいて、空燃比のフィードバック制御を実行するフィードバック制御系と、 前記フィードバック制御系に設けられ、前記排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサと、 所定の診断条件が成立したときに前記フィードバック制御系にインパルス状の外乱を出力する外乱発生手段と、 外乱発生手段による外乱出力後に前記リニア空燃比センサの出力に基づいて前記リニア空燃比センサのむだ時間と時定数とを判定パラメータとして演算する判定パラメータ演算手段と、 演算された判定パラメータに基づいて前記リニア空燃比センサの劣化を判定する判定手段と を備え、 前記判定パラメータ演算手段は、時定数の遅れに基づいてむだ時間を補正するむだ時間補正手段を有している ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項2】 請求項1記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、むだ時間の演算を終了した時点を起点として、予め設定された時定数演算期間内に時定数を演算するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項3】 請求項1または2記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、前記外乱発生手段による外乱の出力開始から前記リニア空燃比センサの出力を微分した微分値が所定のしきい値に達するまでの時間に基づいてむだ時間を演算するとともに、前記微分値のピークに基づいて時定数を演算するものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項4】 請求項2または3に記載のリニア空燃比センサの劣化診断装置において、 前記判定パラメータ演算手段は、前記時定数演算期間を調整する時定数演算期間調整手段を有しているものであることを特徴とするリニア空燃比センサの劣化診断装置。 【請求項5】 請求項4項に記載のリニア空燃比センサの劣化診断装置において、 前記エンジンの運転状態を検出する運転状態検出手段を設け、 前記時定数演算期間調整手段は、前記運転状態検出手段が検出した運転状態に応じて前記時定数演算期間を調整するものである ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項6】 請求項1から5の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、予め設定された診断期間内に燃料噴射量をリッチ側に増量するリッチ側外乱とリーン側に減量するリーン側外乱とを複数回出力するものであり、 前記判定手段は、前記診断期間内に判定パラメータ演算手段が積算したリーン側の外乱に対する判定パラメータとリッチ側の外乱に対する判定パラメータとをそれぞれ平均して基準値と比較することにより、前記リニア空燃比センサの劣化を判定するものである ことを特徴とするリニア空燃比センサの劣化診断装置。 【請求項7】 請求項1から6の何れか1項に記載のリニア空燃比センサの劣化診断装置において、 前記外乱発生手段は、むだ時間の演算を終了した時点で外乱の生成をリセットするものであることを特徴とするリニア空燃比センサの劣化診断装置。
|
【発明の詳細な説明】【技術分野】 【0001】 本発明はリニア空燃比センサの劣化診断装置に関し、より詳細には、エンジンの排気系に設けられ、排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサの劣化を診断するリニア空燃比センサの劣化診断装置に関する。 【背景技術】 【0002】 従来、この種のリニア空燃比センサの劣化診断装置としては、例えば特許文献1に開示されている技術がある。この特許文献1に開示されている技術では、通常運転時では、PID動作によって空燃比のフィードバック制御を実行するとともに、診断時には、フィードバック制御系のD動作を禁止してPI動作に切り換えることにより、リニア空燃比センサの出力変動を拡大し、センサ劣化度合いが大きい程、応答周期が長くなることに基づいて、リニア空燃比センサの応答遅れを拡大して検出するようにしている。 【特許文献1】特許第3377336号公報 【発明の開示】 【発明が解決しようとする課題】 【0003】 特許文献1に開示されている装置では、リニア空燃比センサの出力変動を拡大しているのでリニア空燃比センサの劣化判定が容易になる反面、診断時にD動作を禁止してPI動作に切り換えているので、目標空燃比に対する追従性が低下する結果、診断時のエミッション低下が不可避になるという問題があった。 【0004】 そこで本件出願人は、先に、診断時のエミッション低下を可及的に防止することができ、精度の高い劣化検出を迅速に実行することのできるリニア空燃比センサの劣化診断装置を提案している。その構成では(むだ時間+一次遅れ要素)のプロセス伝達関数G(s) 【0005】 【数1】
【0006】 (但し、Lはむだ時間、τは時定数、Kはゲイン) のパラメータであるむだ時間Lと時定数τとをそれぞれ求め、これらの何れかに遅れが生じている場合には、センサが劣化しているものと判定するようにしている。 【0007】 図10は、センサの出力を示すタイミングチャートであり、図11は、図10の分析を示すグラフである。なお、図10(A)〜(D)において、実線は、正常なリニア空燃比センサの出力、破線は、時定数の遅れがあるリニア空燃比センサの出力である。 【0008】 図10(A)〜(D)並びに図11を参照して、図示の例では、インパルス状の外乱(燃料噴射量)LR、RLをリッチ側とリーン側とに交互に出力し、空燃比センサの出力を実空燃比PFとして検出する。そして、空燃比センサのむだ時間L、時定数τを求めるために、通常は、空燃比センサの出力を実空燃比PFとしてモニタし、この実空燃比PFを微分し、その値が所定の値に達するまでの時間をむだ時間Lとするとともに、前記所定の値から微分値がピークに達するまでの時間を時定数τとしている。 【0009】 ここで、空燃比センサに塵埃が付着する等した場合、空燃比センサのステップ応答が鈍くなる結果、時定数τも、図11に示すように長くなる。ところが演算上は、図10(C)(D)の矢印Difで示すように、むだ時間Lも長くなっているかのような演算結果が出力されることが判明した。しかして、むだ時間は、根幹的な制御パラメータであり、その精度を高めることは、制御理論上、極めて重要な意義を有する。仮に、リニア空燃比センサの劣化によりむだ時間の遅れが所定量を超えている場合には、フィードバックゲインを小さくすることによって、消極的に対応することは可能であるものの、もはや適切なフィードバック制御を行うことはできなくなる。そのため、むだ時間遅れが大きい場合には、センサの交換が必要となってくる。他方、時手数は、センサのごみ詰まり等によっても生じ得るものであり、単純なメンテナンスによって時手数の遅れを改善することが可能となる。また、制御理論的にも、即時にある程度のフィードバックが可能であるとともに、遅れ量を正確に検出すれば、フィードバックを高める等、影響を適切に相殺する制御理論的な扱いも可能となる。にも拘わらず、時定数の遅れをむだ時間の遅れと誤検出された場合には、不必要なリニア空燃比センサの交換を行うこととなり、不経済である。 【0010】 本発明は以上のような技術的課題に鑑み、むだ時間、時定数に基づいて空燃比センサの劣化を診断するに当たり、正確にむだ時間と時定数の遅れを計測することのできるリニア空燃比センサの劣化診断装置を提供することを課題としている。 【課題を解決するための手段】 【0011】 上記課題を解決するために本発明は、エンジンの排気ガス中の酸素濃度に基づいて、空燃比のフィードバック制御を実行するフィードバック制御系と、前記フィードバック制御系に設けられ、前記排気ガス中の酸素濃度に比例する値を出力するリニア空燃比センサと、所定の診断条件が成立したときに前記フィードバック制御系にインパルス状の外乱を出力する外乱発生手段と、外乱発生手段による外乱出力後に前記リニア空燃比センサの出力に基づいて前記リニア空燃比センサのむだ時間と時定数とを判定パラメータとして演算する判定パラメータ演算手段と、演算された判定パラメータに基づいて前記リニア空燃比センサの劣化を判定する判定手段とを備え、前記判定パラメータ演算手段は、時定数の遅れに基づいてむだ時間を補正するむだ時間補正手段を有していることを特徴とするリニア空燃比センサの劣化診断装置である。この態様では、空燃比センサの出力に基づいて、むだ時間、時定数が演算される。この時点で演算されたむだ時間は、時定数の遅れに基づく誤差を含んでいる場合があるが、むだ時間補正手段が時定数の遅れに応じてむだ時間を補正することにより、むだ時間と時定数の何れに遅れが生じているのかを正確に把握することが可能となり、制御理論上、最も重要な「むだ時間」に基づく劣化診断を正確に行うことが可能になる。この発明において、外乱発生手段が生成する「外乱」とは、空燃比のフィードバック制御系の状態を過渡的に乱す外的作用をいい、具体的な例としては、燃料噴射量を意図的にリッチ側またはリーン側に変動させることにより、空燃比のフィードバック制御系に付加されるものである。 【0012】 好ましい態様において、前記判定パラメータ演算手段は、むだ時間の演算を終了した時点を起点として、予め設定された時定数演算期間内に時定数を演算するものである。この態様では、時定数が、むだ時間の検出を起点として、予め設定された時定数演算期間内に演算されるので、必要最低限の時間で、時定数を演算し、不随意な外乱による誤判定を防止することが可能になる。[発明が解決しようとする課題]欄にて説明したように、リニア空燃比センサは、「むだ時間+一次遅れ要素」のプロセス伝達関数G(s)に従うため、むだ時間を演算することにより、リニア空燃比センサの時定数を予測することが可能になる。従って、前記時定数演算期間を設定し、この時定数演算期間内にて時定数を演算することにより、必要最小限の時間で正確な時定数を求めることが可能になる。なお、上述したように、演算された時定数に遅れが出ている場合もあり得るので、前記時定数演算期間には、所定の遅れを考慮した補正値が織り込まれている。 【0013】 好ましい態様において、前記判定パラメータ演算手段は、前記外乱発生手段による外乱の出力開始から前記リニア空燃比センサの出力を微分した微分値が所定のしきい値に達するまでの時間に基づいてむだ時間を演算するとともに、前記微分値のピークに基づいて時定数を演算するものである。この態様では、むだ時間、時定数をそれぞれリニア空燃比センサの出力の微分値に基づいて演算しているので、より精度の高い劣化診断を図ることが可能になる。 【0014】 好ましい態様において、前記判定パラメータ演算手段は、前記時定数演算期間を調整する時定数演算期間調整手段を有しているものである。この態様では、診断時の諸状況(例えば、運転時間やリニア空燃比センサの出力の挙動)に応じて適宜、時定数演算期間を調整し、適切に時定数を演算することが可能になる。 【0015】 好ましい態様において、前記エンジンの運転状態を検出する運転状態検出手段を設け、前記時定数演算期間調整手段は、前記運転状態検出手段が検出した運転状態に応じて前記時定数演算期間を調整するものである。この態様では、運転状態に拘わらず好適に時定数を演算することが可能になる。 【0016】 好ましい態様において、前記外乱発生手段は、予め設定された診断期間内に燃料噴射量をリッチ側に増量するリッチ側外乱とリーン側に減量するリーン側外乱とを複数回出力するものであり、前記判定手段は、前記診断期間内に判定パラメータ演算手段が積算したリーン側の外乱に対する判定パラメータとリッチ側の外乱に対する判定パラメータとをそれぞれ平均して基準値と比較することにより、前記リニア空燃比センサの劣化を判定するものである。この態様では、複数回外乱を出力して判定パラメータを演算し、その平均値によってリニア空燃比センサの劣化を判定しているので、より精度の高い劣化判定を実現することが可能になる。また、診断期間を設定し、その診断期間内に外乱を出力するようにしているので、必要以上に外乱を出力し、排気性能を低下させる恐れがない。また、診断期間を設定することにより、他の診断制御との整合性を容易にとることができ、設計の自由度を高めることが可能になる。 【0017】 好ましい態様において、前記外乱発生手段は、むだ時間の演算を終了した時点で外乱の生成をリセットするものである。この態様では、リニア空燃比センサの劣化状態に応じて必要最小限の期間だけ外乱を出力させることが可能になる。このため、診断期間を可及的に短縮化できるとともに、むだ時間に基づく正確な劣化診断を実行することが可能になる。 【発明の効果】 【0018】 以上説明したように、本発明では、「むだ時間+一次遅れ要素」としてリニア空燃比センサの劣化診断を実行することにより、目標空燃比を変更することなく、劣化診断を行うことができるとともに、むだ時間、時定数に基づいて空燃比センサの劣化を診断するに当たり、むだ時間と時定数の遅れとをそれぞれ正確に計測することができるので、極めて高い精度で的確な劣化診断を行うことができるという顕著な効果を奏する。 【発明を実施するための最良の形態】 【0019】 以下、添付図面を参照しながら本発明の好ましい実施の形態について説明する。 【0020】 図1は本発明の実施の一形態に係るエンジン10の系統図である。 【0021】 図1を参照して、本実施形態の劣化判定装置1に係るエンジン10には、複数の気筒11が設けられるとともに、各気筒11の内部には、図略のクランクシャフトに連結されたピストン12が嵌挿されることにより、その上方に燃焼室14が形成されている。エンジン10には、前記クランクシャフトのエンジン回転速度Neを検出するクランク角センサSW1が設けられている。 【0022】 シリンダヘッドには、前記気筒11毎に燃焼室14に向かって開口する吸気ポート15、排気ポート16がそれぞれ形成されているとともに、これらのポート15、16には、吸気弁17および排気弁18がそれぞれ装備されている。 【0023】 吸気ポート15には、吸気システム20が、排気ポート16には排気システム30がそれぞれ設けられている。 【0024】 吸気システム20は、吸入空気を浄化するエアクリーナ21を上流端に備えている。エアクリーナ21には、エレメント22が内蔵されている。エアクリーナ21の下流側には、スロットルボディ23が設けられている。スロットルボディ23には、吸気システム20内を流通する吸入空気量Qaを調整するスロットルバルブ24が設けられている。本実施形態において、スロットルバルブ24は、電子制御式であり、そのアクチュエータ124によって開弁量が制御されるようになっている。 【0025】 スロットルボディ23の下流側には、インテークマニホールド25が設けられ、このインテークマニホールド25の下流端に設けられた分岐吸気通路26が対応する気筒11の吸気ポート15に接続されている。図示の例では、分岐吸気通路26に燃料噴射弁27が設けられている。この吸気システム20には、エアクリーナ21とスロットルボディ23の間にエアフローセンサSW2が配置されている。エアフローセンサSW2は、エレメント22に濾過された吸入空気の吸入空気量Qaを出力するものである。さらに、スロットルボディ23には、当該スロットルバルブ24のスロットル開度TVOを検出するスロットルセンサSW3が設けられている。 【0026】 排気システム30は、排気ポート16に接続されるエキゾーストマニホールド31と、このエキゾーストマニホールド31の下流側に配置され、当該エキゾーストマニホールド31内に排出された既燃ガスを浄化する三元触媒32と、この三元触媒32の上流側に配置されたリニア空燃比センサSW4とが設けられている。リニア空燃比センサSW4は、既燃ガスから酸素濃度に概ね比例する信号を出力することにより、空燃比A/Fのフィードバック制御を実行するためのものである。本実施形態において、エンジンの目標空燃比A/Fは、原則として理論空燃比(λ=1)に設定される。 【0027】 さらに本実施形態においては、図略のアクセルの踏み込み量を検出するアクセル開度センサSW5が設けられている。 【0028】 上述した各センサSW1〜SW5並びに燃料噴射弁27は、コントロールユニット100に接続されることにより、空燃比A/Fのフィードバック制御系を構成している。 【0029】 図2は本実施形態に係る劣化判定装置1の制御回路ブロック図であり、図3は図2の制御回路によって実現される劣化判定装置1のブロック線図である。 【0030】 まず、図2を参照して、コントロールユニット100は、CPU101、ROMで具体化される補助記憶装置102、RAMで具体化される主記憶装置103を含んでいる。上述した各センサSW1〜SW5は、入力要素としてCPU101に接続されており、それぞれ対応する信号Ne、Qa、TVO、PF、AOFをCPU101に出力するように構成されている。 【0031】 CPU101は、補助記憶装置102に記憶されているプログラムに基づいて、各センサSW1〜SW5の出力した信号Ne、Qa、TVO、PF、AOFを処理し、出力要素として接続されている燃料噴射弁27やアクチュエータ124を制御して空燃比A/Fをフィードバック制御するように構成されている。 【0032】 補助記憶装置102には、詳しくは後述する劣化診断プログラムが記憶されている。 【0033】 主記憶装置103は、補助記憶装置102に記憶されたプログラムを実行する過程で、各センサSW1〜SW5が出力した信号Ne、Qa、TVO、PF、AOFやこれに基づいて演算された演算値を記憶するように構成されている。 【0034】 図3を参照して、コントロールユニット100は、同図に示すフィードバック制御系110を構成している。このフィードバック制御系110は、目標空燃比A/F(λ=1)を目標値DVとする基準入力要素111と、基準入力要素111の出力した基準入力IPに補正信号SSを出力して補正をかける補正要素112と、補正要素112に補正された動作信号ASに基づいて、操作量OVを決定するフィードバック要素114とを含んでいる。 【0035】 補正要素112とフィードバック要素114との間には、リニア空燃比センサSW4の出力(実空燃比)PFが入力されるようになっており、フィードバック要素114は、基準入力要素111の基準入力IPから補正要素112の補正信号SSを差し引き、さらに出力(実空燃比)PFを差し引いた動作信号ASを受けて、フィードバックゲインKを含む所定の伝達関数G(S)に基づき、操作量OVを出力するように構成されている。 【0036】 次に、本実施形態に係るフィードバック制御系110には、外乱LR、RLを交互に発生させる外乱発生手段116が機能的に構成されている。この外乱発生手段116は、補助記憶装置102に記憶されたプログラムが実行されることにより、次に説明するリニア空燃比センサSW4の劣化診断時において動作するものである。外乱発生手段116は、燃料噴射量にインパルス状の外乱LR、RLを与えることによって、過渡的に空燃比A/Fをリッチ側またはリーン側に変更するように構成されている。以下の説明では、リッチ側に空燃比A/Fを変化させるときの外乱はLRと表記し、リーン側に空燃比A/Fを変化させるときの外乱はRLと表記する。外乱発生手段116が出力した外乱LR、RLの出力回数NLR、NRLは、それぞれ主記憶装置103に記憶されるようになっている。これら出力回数NLR、NRLは、予め劣化診断プログラムにおいて、それぞれ等量の所要回数Nendだけ実行するように設定されている。これにより、診断によって意図的に変更された空燃比A/Fが中和され、フィードバック要素114によって制御されている空燃比A/Fが必要以上に乱されないようにして、エミッションの低下を阻止するようにしている。 【0037】 次に、補助記憶装置102に記憶されている制御マップM2(図6参照)について説明する。 【0038】 図4は、補助記憶装置102に記憶されている制御マップM1、M2の基となるグラフであり、(A)は実験値に基づいて作成された吸入空気量Qaと時定数演算期間Tdamの関係を示すグラフであり、(B)は実験値に基づいて作成された補正値Namdと時定数遅れ量τdyの関係を示すグラフである。 【0039】 詳しくは後述するように、補助記憶装置102に記憶されている劣化診断プログラムは、リニア空燃比センサSW4の出力(実空燃比)PFに基づいてむだ時間L、時定数τを演算するのであるが、時定数τを演算する際、演算に必要な時間はエンジン10の吸入空気量Qaに依存する。そこで、本実施形態では、図4(A)のようなグラフに基づく制御マップM1を作成し、この制御マップM1に基づいて、必要充分な期間、すなわち時定数演算期間Tdamを設け、時定数τを演算することとしている。 【0040】 次に、図10(C)(D)並びに図11を用いて詳しく説明したように、時定数τが遅れた場合、演算上は、専ら、むだ時間Lが長くなっているかのような結果が出力される。他方、図11に示すような時定数遅れ量τdyは、時定数τの演算値から求めることが可能である。そこで本実施形態では、図4(B)のようなグラフに基づく制御マップM2を作成し、この制御マップM2に基づいて、むだ時間Lの補正値(補正量)を演算することとしている。 【0041】 図5および図6は本実施形態における劣化診断プログラムのフローチャートである。また図7は図5および図6のフローチャートを実行することによって得られた信号のタイミングチャートである。 【0042】 まず、図5および図7を参照して、劣化診断プログラムが実行されると、CPU101は診断条件が成立するのを待機する(ステップS20)。ここで診断条件とは、 (1) クランク角センサSW1で検出されるエンジン回転速度Neの変化量が所定変化量であり、 (2) スロットルセンサSW3によって検出されるスロットル開度TVOの変化量が所定変化量以下であり、且つ (3) CE=Qa/Neで演算される充填効率CEの変化量が所定変化量以下である という条件を全て満たすいわゆる定常運転時であることをいう。 【0043】 仮に加速時等、診断条件を満たさない場合には、診断条件を満たすまで待機し、診断条件が成立している場合には、診断期間Tdiaが設定され(ステップS21)、診断期間Tを経過した場合には、図9に示す劣化診断判定処理に移行する(ステップS22)。エンジン10の診断処理は、リニア空燃比センサSW4のみならず、数項目を短時間で処理することが必要であるため、診断期間Tdiaを設け、この診断期間Tdiaを経過した場合には、強制的に外乱LR、RLの出力による診断処理を終了することにより、必要充分な時間で的確な劣化診断を図るようにしているのである。 【0044】 診断期間Tdiaの計測が開始され、診断期間Tdiaが満了する前においては、診断期間Tdiaを計測開始した後の外乱LR、RLの出力回数NLR、NRLが比較され(ステップS23)、NRL>NLRが成立する場合には外乱LRがフィードバック制御系110に出力されるとともに(ステップS24)、不成立の場合には、外乱RLがフィードバック制御系110に出力される(ステップS25)。これにより、例えば、図7に示すように、まず、外乱LRが出力され、これによってリニア空燃比センサSW4の出力が変化することになる。 【0045】 次に、コントロールユニット100のCPU101は、入力された実空燃比PFの微分値DO2を演算する(ステップS26)。これにより、リニア空燃比センサSW4の出力した実空燃比PFが外乱LR(またはRL)によってどのように変化するか把握することが可能になる。このように本実施形態のCPU101は、外乱発生手段116による外乱出力後にリニア空燃比センサSW4の出力(実空燃比)PFを微分した微分値DO2を出力する微分手段を機能的に構成している。 【0046】 ここで、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」である。そこで、本実施形態では、むだ時間Lが経過するのを待機し、むだ時間Lの終了を検出して外乱LR、RLをリセットするようにしている。かかる制御を実行するために、CPU101は、図7に示すように、演算された微分値DO2が所定のしきい値+ThD、−ThDを越えるのを待機する(ステップS27)。 【0047】 仮にステップS26で演算された微分値DO2がしきい値+ThD、−ThD以下であれば、ステップS26に戻って処理を繰り返す。 【0048】 他方、ステップS27の判別で、演算された微分値DO2がしきい値+ThD、−ThDを越えた場合には、リニア空燃比センサSW4のむだ時間Lpreを演算し(ステップS28)、外乱発生手段116による外乱LR、RLをリセットする(ステップS29)。このように、むだ時間Lpreの演算を終了した時点で外乱LR、RLをリセットすることにより、必要以上に外乱LR、RLが出力されなくなり、目標空燃比を維持したまま劣化診断を実行することが可能になる。ところで、図10(C)(D)並びに図11で上述したように、この段階で検出されたむだ時間Lpreは、時定数τの遅れに基づく誤差を含んでいる可能性がある。そのため、本実施形態では、この時点で演算されたむだ時間Lpreを補正前のものとして時定数τの演算後に補正することにより、正確なむだ時間Lを演算できるようにしている。 【0049】 次に、本実施形態では、この外乱LR、RLのリセット時に、時定数演算期間Tdamの計測を開始するように構成されている(ステップS30)。この時定数演算期間Tdamもまた、劣化診断を必要充分な時間で実行するために設定されるものである。上述したように、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」として扱うことができるものであるため、むだ時間Lを演算することにより、リニア空燃比センサSW4の時定数τを予測することが可能になる。従って、ステップS30において時定数演算期間Tdamを設定し、この時定数演算期間Tdam内にて時定数τを演算することにより、必要最小限の時間で正確な時定数τを求めることとしているのである。 【0050】 次に、この時定数演算期間Tdamについて説明する。 【0051】 図8は吸入空気量と微分値との関係を示すグラフであり、(A)は低負荷運転時、(B)は高負荷運転時を示している。 【0052】 図8(A)(B)を参照して、エンジン10の運転状態が低負荷運転時においては、エンジン10の吸入空気量Qaは少ないため、排気流速が遅く、むだ時間Lの遅れが大きくなり、リニア空燃比センサSW4の出力(実空燃比)PFは、緩やかな変化特性を示す。これに対し、高負荷運転時においては、吸入空気量Qaが多いため、排気流速が速く、むだ時間Lの遅れが小さくなり、リニア空燃比センサSW4の出力(実空燃比)PFも急峻な変化特性を示す。従って、図4(A)で説明したように、実験等で、時定数演算期間Tdamを吸入空気量Qa(或いはエンジン負荷)に応じて変動するように制御マップM1を定めておき、この制御マップM1に基づいて時定数演算期間Tdamを決定することにより、極めて好適な劣化診断処理を実行することが可能になる。なお、上述したように、時定数τに遅れが出ている場合もあり得るので、制御マップM1には、所定の遅れを考慮した補正値が織り込まれている。 【0053】 図5に戻って、時定数演算期間Tdamが設定されると、ステップS26で演算された微分値DO2のピーク値DO2PKが演算される(ステップS31)。ここで本実施形態においては、この演算の後、時定数演算期間Tdamを経過しているか否かが判定され(ステップS32)、この時定数演算期間Tdamにてピーク値DO2PKの演算が繰り返される。これにより、制御マップM1に基づいて設定された適切な時定数演算期間Tdamにて微分値DO2のピーク値DO2PK、すなわち時定数τを必要充分な時間内に演算することが可能になる。 【0054】 時定数演算期間Tdamを過ぎると、演算されたピーク値DO2PKから時定数τが演算される(ステップS33)。上述したように、リニア空燃比センサSW4は、「むだ時間+一次遅れ要素」として扱うことができるものであるため、時定数演算期間Tdam内における微分値DO2のピーク値DO2PKを演算することにより、時定数τを求めることが可能になる。 【0055】 次に、図6を参照して、時定数τの演算が終了すると、CPU101は、時定数劣化診断サブルーチンが実行される(ステップS36)。この時点で時定数τの診断を行い、時定数τの遅れを検出することによって、むだ時間Lの補正を実行するためである。このサブルーチンの内容としては、ステップS33で演算されたピーク値DO2PKが予め設定された基準値に達しているか否かを判定し、達していない場合には、遅れが生じているものとして判定し、その遅れ値を主記憶装置103に保存することとしている。 【0056】 ステップS36の時定数サブルーチンが終了すると、時定数τの診断値に基づいて、上述した制御マップM2からむだ時間Lの補正値を索引し(ステップS37)、補正前のむだ時間Lpreを補正するようにしている(ステップS38)。時定数τに遅れがない場合には、補正量は0となる。逆に時定数τに遅れがある場合(図11参照)には、その遅れ分に相当する補正量がむだ時間Lpreから差し引かれる(図4(B)参照)。これにより、正確なむだ時間Lの演算が可能になる。 【0057】 次に、外乱発生手段116が生成した外乱が、燃料を減量するものであったか、増量するものであったかを判定し(ステップS39)、外乱が減量方向の場合はRLとして、増量の場合はLRとして、それぞれ劣化検出値(演算されたむだ時間L、時定数τ)を主記憶装置103に保存し(ステップS40、S41)、主記憶装置103に記憶されている出力回数NLR、NRLをインクリメントする(ステップS42、S43)。 【0058】 次いで各外乱LR、RLについて、所要の診断回数NENDを終了したか否かが判定され(ステップS44、S45)、何れかの出力回数NLR、NRLが所要の診断回数NENDに満たない場合には、ステップS22に戻って処理を繰り返し、双方の出力回数NLR、NRLが終了している場合には、劣化判定処理に移行する。 【0059】 図9は劣化判定処理の詳細を示すフローチャートである。 【0060】 図9を参照して、ここでは、劣化判定を行うために、むだ時間Lと時定数τの和を過渡時間Tとして定義している。尤も、過渡時間Tは、むだ時間Lのみ、或いは時定数τのみであってもよいことはいうまでもない。 【0061】 ステップS43までの処理が終了すると、CPU101は、まず、カウントされた外乱LR、RLの出力回数NLR、NRLがそれぞれ所定の最小値Nmin以上であるか否かを判定し(ステップS209、S210)、最小値Nminに満たない場合には、直ちに過渡時間遅れと判定する(ステップS217、S219)。通常、リニア空燃比センサSW4が正常な場合には、診断期間Tdia内に必要な出力回数NLR、NRLの演算が実行されるのに対し、リニア空燃比センサSW4の劣化が進むと、フィードバックが発散しやすくなることから、判定パラメータの積算数が少なくなる。そのような場合には、排気性能の低下を抑止する観点から、劣化判定を下すことにより、僅かでも劣化の可能性があるリニア空燃比センサに対してより安全側な判定診断(すなわち不良判定)を行うことにより、フェールセーフ機能を高めているのである。 【0062】 カウントされた外乱LR、RLの出力回数NLR、NRLがそれぞれ所定の最小値Nmin以上である場合、CPU101は、リッチ側の外乱LRとリーン側の外乱RLに係る平均過渡時間TLR、TRLをそれぞれ演算する(ステップS211)。次いで、両平均過渡時間TLR、TRLの絶対値の差を演算し、その値が所定のしきい値ThBを越えていないかどうか判定する(ステップS212)。各平均過渡時間TLR、TRLにおいて、絶対値の差が大きい場合には、フィードバック要素114による空燃比制御がリッチ側またはリーン側にずれてしまうので、そのようなずれを防止するために、両平均過渡時間TLR、TRLの絶対値の差が演算されている。 【0063】 仮に両平均過渡時間TLR、TRLの絶対値の差がしきい値ThB以下の場合、今度は、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えているか否かが判定される(ステップS213)。両平均過渡時間TLR、TRLの絶対値の和が大きい場合には、フィードバック制御が過補正になり、制御が緩慢になって発散しやすくなるからである。 【0064】 仮に、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThA以下の場合には、過渡時間Tについて正常と判定される(ステップS214)。他方、両平均過渡時間TLR、TRLの絶対値の和がしきい値ThAを越えている場合には、リニア空燃比センサSW4の劣化がリッチ側でもリーン側でも起きていると判定される(ステップS215)。 【0065】 他方、ステップS212において、両平均過渡時間TLR、TRLの絶対値の差がしきい値ThBを越えている場合、リッチ側の平均過渡時間TLRとリッチ側のしきい値ThRとが比較されてリッチ側で過渡時間遅れが生じているか否かが判定され(ステップS216)、しきい値ThRを越えている場合には、リッチ側過渡時間遅れが生じていると判定される(ステップS217)。また、平均過渡時間TLRがしきい値ThR以下の場合には、さらにリーン側の平均過渡時間TRLとリーン側のしきい値ThLとが比較され、リーン側で過渡時間遅れが生じているか否かが判定される(ステップS218)。リーン側の平均過渡時間TRLがしきい値ThLを越えている場合には、リーン側過渡時間遅れが生じていると判定され(ステップS219)、しきい値ThL以内である場合には、正常判定がなされる。なおしきい値ThB、ThAの設定によっては、ステップS218を省略し、ステップS216でNOと判定された場合には、そのままステップS219の判定を実行するようにしてもよい。 【0066】 そして、ステップS214、S215、S217、S219の何れかが終了すると、処理が終了する。 【0067】 以上説明したように本実施形態では、リニア空燃比センサSW4の出力(実空燃比)PFに基づいて、むだ時間L、時定数τが演算される。この時点で演算されたむだ時間Lは、時定数τの遅れに基づく誤差を含んでいる場合があるが、むだ時間補正手段としてのコントロールユニット100が、時定数τの遅れに応じてむだ時間Lを補正することにより、むだ時間Lと時定数τの何れに遅れが生じているのかを正確に把握することが可能となり、制御理論上、最も重要な「むだ時間L」に基づく劣化診断を正確に行うことが可能になる。 【0068】 また、本実施形態では、むだ時間Lの演算を終了した時点を起点として、予め設定された時定数演算期間Tdam内に時定数τを演算するものである。このため本実施形態では、必要最低限の時間で、時定数τを演算し、不随意な外乱による誤判定を防止することが可能になる。上述したようにリニア空燃比センサSW4は、「むだ時間L+一次遅れ要素」のプロセス伝達関数G(s)に従うため、むだ時間Lを演算することにより、リニア空燃比センサSW4の時定数τを予測することが可能になる。従って、前記時定数演算期間Tdamを設定し、この時定数演算期間Tdam内にて時定数τを演算することにより、必要最小限の時間で正確な時定数τを求めることが可能になる。 【0069】 また、本実施形態では、外乱LR、RLの出力開始から、リニア空燃比センサSW4の出力を微分した微分値DO2が所定のしきい値±ThDに達するまでの時間に基づいてむだ時間Lを演算するとともに、時定数演算期間Tdam中の微分値DO2のピークに基づいて時定数τを演算するものである。このため本実施形態では、むだ時間L、時定数τをそれぞれリニア空燃比センサSW4の出力の微分値DO2に基づいて演算しているので、より精度の高い劣化診断を図ることが可能になる。 【0070】 また、本実施形態では、制御マップM1を設けることにより、コントロールユニット100が時定数演算期間Tdamを調整する時定数演算期間調整手段を構成している。このため本実施形態では、診断時の諸状況(例えば、運転時間やリニア空燃比センサSW4の出力の挙動)に応じて適宜、時定数演算期間Tdamを調整し、適切に時定数τを演算することが可能になる。 【0071】 また、本実施形態では、コントロールユニット100が、エンジン10の運転状態を検出する運転状態検出手段を機能的に構成しているとともに、この運転状態検出手段としてのコントロールユニット100が検出した運転状態に応じて時定数演算期間Tdamを調整するものである。このため本実施形態では、運転状態に拘わらず好適に時定数τを演算することが可能になる。 【0072】 また、本実施形態では、予め設定された診断期間Tdia内に燃料噴射量をリッチ側に増量するリッチ側外乱LR、RLとリーン側に減量するリーン側外乱LR、RLとを交互に同じ出力回数だけ複数回出力し、診断期間Tdia内に積算されたリーン側の外乱LR、RLに対する判定パラメータ(過渡時間T)とリッチ側の外乱LR、RLに対する判定パラメータとをそれぞれ平均して基準値ThA、ThB、ThR、ThLと比較することにより、リニア空燃比センサSW4の劣化を判定するものである。このため本実施形態では、より精度の高い劣化判定を実現することが可能になる。また、診断期間Tdiaを設定し、その診断期間Tdia内に外乱LR、RLを出力するようにしているので、必要以上に外乱LR、RLを出力し、排気性能を低下させる恐れがない。また、診断期間Tdiaを設定することにより、他の診断制御との整合性を容易にとることができ、設計の自由度を高めることが可能になる。 【0073】 また、本実施形態では、時定数τの演算に際しては、むだ時間Lの演算が終了した時点で外乱の生成がリセットされるので、リニア空燃比センサSW4の劣化状態に応じて必要最小限の期間だけ外乱を出力させることが可能になる。このため、診断期間を可及的に短縮化できるとともに、むだ時間Lに基づく正確な劣化診断を実行することが可能になる。 【0074】 このように本実施形態においては、目標空燃比を変更することなく、劣化診断を行うことができるとともに、「むだ時間+一次遅れ要素」としてリニア空燃比センサSW4の劣化診断を実行することができるので、極めて高い精度で的確な劣化診断を行うことができるという顕著な効果を奏する。 【0075】 上述した実施形態は本発明の好ましい具体例に過ぎず本発明は上述した実施形態に限定されない。例えば、むだ時間L、時定数τを求める方法としては、必ずしも微分値を演算する方法である必要はなく、リニア空燃比センサSW4の出力値や出力期間等から直接判定する方法を採用してもよい。 【0076】 その他、本発明の特許請求の範囲内で種々の変更が可能であることはいうまでもない。 【図面の簡単な説明】 【0077】 【図1】本発明の実施の一形態に係るエンジンの系統図である。 【図2】本実施形態に係る劣化判定装置の制御回路ブロック図である。 【図3】図2の制御回路によって実現される劣化判定装置のブロック線図である。 【図4】補助記憶装置に記憶されている制御マップの基となるグラフであり、(A)は実験値に基づいて作成された吸入空気量と時定数演算期間の関係を示すグラフであり、(B)は実験値に基づいて作成された補正値と時定数遅れ量の関係を示すグラフである。 【図5】本実施形態における劣化診断プログラムのフローチャートである。 【図6】本実施形態における劣化診断プログラムのフローチャートである。 【図7】図5および図6のフローチャートを実行することによって得られた信号のタイミングチャートである。 【図8】吸入空気量と微分値との関係を示すグラフであり、(A)は低負荷運転時、(B)は高負荷運転時を示している。 【図9】劣化判定処理の詳細を示すフローチャートである。 【図10】センサの出力を示すタイミングチャートである。 【図11】図10の分析を示すグラフである。 【符号の説明】 【0078】 1 劣化判定装置 10 エンジン 100 コントロールユニット(微分手段、判定パラメータ演算手段、判定手段、むだ時間補正手段、時定数演算期間調整手段の一例) 110 フィードバック制御系 116 外乱発生手段 A/F 空燃比 DO2 微分値 DO2PK 微分ピーク値 G(S) プロセス伝達関数 K フィードバックゲイン L むだ時間 Lpre 補正前むだ時間 LR、RL 外乱 NEND 診断回数 NLR、NRL 出力回数 M1 制御マップ M2 制御マップ PF 出力(実空燃比) Qa 吸入空気量 SW1 クランク角センサ SW2 エアフローセンサ(吸入空気量検出手段の一例) SW3 スロットルセンサ SW4 リニア空燃比センサ SW5 アクセル開度センサ T 過渡時間 ThA、ThB、ThC、dThC、+ThD、−ThD、ThL、ThR しきい値 Tdam 時定数演算期間 TVO スロットル開度 τ 時定数 τdy 時定数遅れ量
|
【出願人】 |
【識別番号】000003137 【氏名又は名称】マツダ株式会社
|
【出願日】 |
平成18年1月16日(2006.1.16) |
【代理人】 |
【識別番号】100067828 【弁理士】 【氏名又は名称】小谷 悦司
【識別番号】100096150 【弁理士】 【氏名又は名称】伊藤 孝夫
【識別番号】100099955 【弁理士】 【氏名又は名称】樋口 次郎
|
【公開番号】 |
特開2007−187129(P2007−187129A) |
【公開日】 |
平成19年7月26日(2007.7.26) |
【出願番号】 |
特願2006−7488(P2006−7488) |
|