プレスリリース 独立行政法人 理化学研究所
植物の耐病性の複雑な制御メカニズムを解明
- 病原菌と環境ストレスに対抗する複雑な生存戦略が存在 -
平成20年6月28日
◇ポイント◇
  • 環境要因が植物の獲得免疫機構を抑制する新メカニズムを発見
  • 生物/非生物ストレス応答で、植物ホルモンのシグナルネットワークが働く
  • 殺菌剤に依存しない環境低負荷型の病害防除システム構築に貢献
 独立行政法人理化学研究所(野依良治理事長)は、植物の病原菌感染(生物ストレス)に対する免疫機構である「全身獲得抵抗性(systemic acquired resistance:SAR)※1」が乾燥・塩害などの環境ストレス(非生物ストレス)によって弱められ、逆に全身獲得抵抗性を既に獲得していると環境ストレスへの応答が低下するという、複雑なストレス耐性制御機構を持つことを初めて明らかにしました。理研基幹研究所(玉尾皓平所長)仲下植物獲得免疫研究ユニットの安田美智子協力研究員、仲下英雄ユニットリーダーと理研植物科学研究センター(篠崎一雄センター長)、公立大学法人福井県立大学(祖田修学長)、国立大学法人東京大学(小宮山宏学長)などとの共同研究による成果です。
 植物は、病原菌に感染すると、サリチル酸や抗菌性タンパク質などを体内に蓄積し、病原菌の2次感染を抑制します。このサリチル酸をシグナルとする抵抗性は全身獲得抵抗性と呼ばれ、植物独自の獲得免疫機構として盛んに研究されています。実際に、作物を病気から守る目的で、農業に活用されています。研究チームは、乾燥、低温、塩害などの環境ストレスへの応答に重要な役割を果たすアブシジン酸が、サリチル酸の合成遺伝子やシグナル応答遺伝子の機能を低下させ、SARの誘導を抑制して、結果として病原菌の感染に対する抵抗性が弱まることを明らかにしました。一方、SARが既に誘導された植物では、環境ストレスへの応答能が低下することも見いだし、これら両者の間に相互抑制的なシグナルのクロストーク※2が存在することを突き止めました。本研究結果から、植物が生物/非生物ストレスの両方を受けた時に生体内の限られたエネルギーで効率よく適応するために、このような相互抑制的なメカニズムを備えていると推定されます。
 本研究成果は、米国の科学雑誌『The Plant Cell』(6月号)に掲載されるに先立ち、オンライン版(6月27日付け:日本時間6月28日)に掲載されます。なお、本成果は、『The Plant Cell』巻頭で編集者が紹介する話題の成果の1つとして取り上げられます。


1. 背景
 固定生活を営み生育場所から移動できない植物は、さまざまな外界からのストレスを常に受けるため、動物とは異なる独自の自己防御機構を備えています。病原体の攻撃などの生物ストレスに対して、動物のように免疫担当細胞を持たない植物では、個々の細胞が病原菌に対する抵抗性を発動させ、そのシグナルが全身に伝えられ2次感染に備えます。また、乾燥・低温・塩害などの環境変動から受ける非生物的ストレスに対して、植物は環境に適応するための保護タンパク質などを生産し、これらのストレスに適応します。これらの生物/非生物ストレスに対応するためには、植物ホルモン※3のような低分子化合物をシグナル伝達物質として全身に情報を伝えて、さまざまなストレスに対する応答システムを発動させて自身を防御しています。
 壊死病斑を形成する病原菌が感染して、細胞の壊死を伴う病徴が現れる際には、一種の植物ホルモンであるサリチル酸が合成され、これがシグナル物質として働いて「全身獲得抵抗性(SAR)」が誘導されます(図1)。このような全身に誘導される病害抵抗性は、初めに感染した特定の病原体に対してだけではなく、多種多様な病原体の感染に対して防御効果を持つという特徴があり、病原微生物の脅威にさらされることが多い環境のなかで身を守る植物独自の免疫機構といえます。この特徴は、農業での利用価値が高いため、基礎・応用の両面から盛んに研究が進められてきています。
 基礎研究としては、SARが起きるメカニズムに関する研究が進められ、サリチル酸合成が誘導される機構や、サリチル酸の下流のシグナル伝達機構が徐々に明らかになっています。また、応用研究として、このようなSARを活性化する農薬が開発されてきました。
 日本では、約30年も前からSARを誘導する薬剤が、農薬として水田で利用されてきました。SAR誘導剤は、それ自体には抗菌作用がないため、生態系に影響を与えない環境に優しい農薬であり、さらに植物の複雑な病害抵抗性機構を活性化するので耐性菌が出現しない、という効果もあります。しかし、このようなSAR誘導剤が使用されていても、冷害時などのように植物の生育に影響を及ぼす環境ストレス下では、効果が十分に発揮されず、病害を被ることがあります。この理由は、植物体が弱るためと考えられてきましたが、そのメカニズムは明らかになっていませんでした。


2. 研究手法と成果
(1) 環境ストレスのSARへの影響
 研究チームは、モデル実験植物であるシロイヌナズナを用いて、SARに及ぼす環境ストレスの影響を詳細に解析しました。通常、SARは、病原菌の感染によって誘導されますが、本研究ではSAR誘導経路を活性化する化合物(農薬として利用されている化合物の類縁体など)を使用してSARを誘導しました。これは、病原菌感染時に植物で起こるさまざまな生理現象の影響を除外するためで、これによりSARにかかわる複雑な遺伝子発現の制御だけを観察できるようになります。今回、SAR誘導化合物として、サリチル酸合成の上流シグナルを活性化するBIT※4と下流シグナルを活性化するBTH※4を使用し、SAR誘導経路をより詳細に観察しました。
 まず、環境ストレスを受けた際に働く植物ホルモンであるアブシジン酸を介したシグナル伝達が、SAR誘導におよぼす影響を調べました。シロイヌナズナをアブシジン酸で前もって処理したところ、サリチル酸合成にかかわる遺伝子やサリチル酸の蓄積、サリチル酸の下流のシグナル伝達のすべてに対して抑制が起き、SARの誘導が強く抑制されていることがわかりました(図2)。次に、実際の環境ストレスの一例として、高濃度の塩の処理(塩害)を行い、アブシジン酸合成を含む環境ストレス応答シグナルを活性化しました。その結果、同じようにSAR誘導が抑制されることを見いだしました。反対に、植物体内のアブシジン酸濃度が通常より低く、高濃度の塩の処理でも植物体内のアブシジン酸が増加しないようになった植物を用いた場合には、環境ストレスを前もって与えてもSAR誘導の抑制は起こらず、通常のアブシジン酸濃度の植物よりも強いSARが誘導されました。
 これらの結果は、植物が環境ストレスに応答してアブシジン酸の合成・蓄積がおきると、SARのような病害抵抗性が弱められてしまうことを示しています。農業の現場で使用されているSAR誘導剤が、環境ストレスにさらされた植物で効果を発揮できない理由も、ここにあると考えられます。
(2) SARの環境ストレス応答への影響
 ゲノム研究手法であるマイクロアレイ解析を行った結果、SARが常に誘導されている突然変異株では、環境ストレス応答に関わる遺伝子の発現が低い傾向にあることがわかりました。実際に、SAR誘導化合物BITによってサリチル酸合成やSARを誘導した植物では、塩処理を施しても、アブシジン酸合成にかかわる遺伝子や下流のシグナル伝達にかかわる遺伝子の発現が抑制されていました。また、SAR誘導経路の一部を失った突然変異株を用いた実験から、この抑制のメカニズムは少なくとも2種類あることがわかり、複雑な制御が働いていることが明らかとなりました。
 以上の結果は、植物では、乾燥・塩害・低温などの環境ストレスに対する応答シグナルと、病原菌感染などの生物ストレスに対する全身獲得抵抗性誘導シグナルと間に、拮抗的な相互作用があることを示しています(図3)。また、このシグナル間クロストークは、植物のストレス応答が複雑な制御を受けていることを裏付けました。乾燥などは、植物体全体に影響を及ぼす環境ストレスであり、個体の生命維持に大きな影響を与えます。一方、葉や根などさまざまな部位で局所的に受ける病害も、全身に蔓延した場合には全体が枯れ、生命の危機に至ります。植物は、そのときの状況に応じて一方の応答システムを止めて、より重要なストレスに対して効果的に対処していると考えられます。
 虫による食害や傷害などの刺激によって、ジャスモン酸という植物ホルモンを介して全身に誘導される抵抗性機構もありますが、これまでに、このジャスモン酸のシグナルは、サリチル酸のシグナルともアブシジン酸のシグナルとも拮抗的な相互作用があることがわかっています。したがって、外界からのさまざまなストレスに対して、この3つのシグナル伝達経路は3つ巴の関係で相互に制御しあっていると考えられます(図4)。植物が受けるストレスの種類と大きさなど、その時々の緊急性にあわせて、それぞれ対応するストレス応答システムを制御し、限られた生命エネルギーを効率よく使用して、危機的状況を耐え抜こうとするメカニズムが働いていると考えられます。


3. 今後の期待
 植物のストレス応答では、種々の植物ホルモンの複雑なシグナルネットワークが働いていると推定されていますが、本研究成果は、その一端を明らかにしたものです。今回得られた知見は、シグナルネットワークの解明に大きく貢献し、さまざまな環境に適応しながら生き抜いて、種を守っていく植物の生存戦略の解明に役立つことが期待できます。相互抑制関係を制御する因子を見いだし利用することにより、さまざまなストレスに対して同時に適応できる強い植物を作ることができると考えられます。
 また、本研究成果は、植物の免疫力を効果的に利用する手法の開発に貢献します。具体的には、既に農薬として使用しているSAR誘導剤の効果的利用技術の開発や、新しいSAR誘導剤の開発、また日本では水田だけで利用しているSAR誘導剤を、生育環境の異なるさまざまな作物へ適用する技術、さらに、SARを抑制するシグナルを抑える植物免疫安定化剤の開発などです。これらを通して、環境調和型の農業生産体系の確立に貢献できると考えています。


(問い合わせ先)

独立行政法人理化学研究所
基幹研究所 仲下植物獲得免疫研究ユニット
ユニットリーダー 仲下 英雄(なかした ひでお)

Tel: 048-467-9529 / Fax: 048-462-4670

(報道担当)

独立行政法人理化学研究所 広報室 報道担当

Tel: 048-467-9272 / Fax: 048-462-4715
Mail: koho@riken.jp


<補足説明>
※1 全身獲得抵抗性(SAR)
植物の病原菌に対する自己防御機構である誘導抵抗性の1つ。特定の病原菌に対する抵抗性を獲得した植物は、この病原菌が侵入した部位で過敏感細胞死を引き起こして病原菌を封じ込めて増殖を抑える。このようにして形成された壊死病斑ではさまざまな生理学的変化が生じているが、その1つとして合成されるサリチル酸がシグナルとなって情報が全身に伝えられ、感染部位から離れた組織でも次の感染に備えて抵抗性を発揮するようになる。
※2 クロストーク
植物ホルモンは、単独でも生長調節などのさまざまな生理現象に働くが、その際に、ほかの植物ホルモンシグナルにも影響を与えることが知られている。また、1つの生理現象について複数の植物ホルモンが関与しているものもある。植物ホルモンの組み合わせにより、ある生理現象について相乗的に働いたり、抑制的に働いたりする。この現象をクロストークと呼んでいる。
※3 植物ホルモン
植物の生長を制御する低分子化合物の総称。現在までに、オーキシン、ジベレリン、サイトカイニン、エチレン、ジャスモン酸、アブシジン酸、ブラシノステロイドの7種類が認定されている。サリチル酸は生長に影響を与えないが、耐病性誘導に重要な役割を担っていることから、準植物ホルモン(教科書によっては植物ホルモン)として認定されている。
※4 BITとBTH
1,2-benzisothiazol-3(2H)-one1,1-dioxide(BIT)と benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester(BTH)は、 合成化合物で、いずれもイネ、タバコ、シロイヌナズナをはじめ、さまざまな植物で全身獲得抵抗性を誘導する活性を持つ。
BITとBTH


図1 全身獲得抵抗性(SAR)の概念図
図1 全身獲得抵抗性(SAR)の概念図
壊死病斑を形成する病原菌が感染した部位から、サリチル酸(SA)をシグナルとして情報が全身に伝えられ、健康な葉でも病害抵抗性を発動して、次の感染に備える。SARは、多様な病原体に対して防御効果を発揮できる。SAR誘導経路を活性化する化合物(SAR誘導化合物)が農薬として利用されている。


図2 環境ストレスによる全身獲得抵抗性の抑制
図2 環境ストレスによる全身獲得抵抗性の抑制
乾燥・低温・塩害等の環境ストレスを受けた植物は、アブシジン酸(ABA)を生産して、環境ストレスに耐えるメカニズムを活性化させる。この環境ストレス応答が活性化されている植物では、全身獲得抵抗性(SAR)の誘導が抑制された。


図3 植物ホルモンのクロストーク
図3 植物ホルモンのクロストーク
病原菌の感染によりサリチル酸(SA)を介して誘導される全身獲得抵抗性(SAR)の誘導経路と、環境ストレスによりアブシジン酸(ABA)を介して誘導される環境ストレス応答の間には、複数の箇所において、相互に抑制するクロストークが存在している。


図4 ストレスに対する植物ホルモンシグナルのネットワーク
図4 ストレスに対する植物ホルモンシグナルのネットワーク
病害、虫害、乾燥等のストレスに対する応答システムでは、それぞれサリチル酸(SA)、ジャスモン酸(JA)、アブシジン酸(ABA)が働くが、これらのシグナルは相互に抑制的に制御している。植物は、その時々の状況に合わせて必要なシグナルを強めて、効率的にストレスに適応している。

<< 戻る [Go top]
copyright (c) RIKEN, Japan. All rights reserved.