Human behavior is a reflection of brain function. Our emotions, our intelligence, and our ability to learn and remember all depend on the intricacy of communication between trillions of nerve cells in the human brain. These neuronal circuits or pathways are sculpted by the constant modification of synaptic connections between neurons. These 'synapses' are specialized areas of contact in which signals are sent and received between two neurons. Active neurons release chemical signals, or neurotransmitters, at synapses, which travel across the narrow synaptic cleft between the neurons and bind to specific receptor molecules that activate the neighboring neuron. Each of the trillion neurons in the human brain can have up to 1000 synaptic connections. By establishing an ever-changing network of synapses, the brain is able to attain the level of functional complexity that underlies human behavior. The efficiency of the transmission of signals at synapses is constantly being adapted in response to surrounding neuronal activity. This constant change in the synaptic communication between neurons is called 'synaptic plasticity' and is critical for higher brain functions such as learning and memory.


Slideshow image
    Our laboratory is interested in the mechanisms that regulate synaptic transmission and synaptic plasticity. The general approach we have taken is to study molecular and cellular mechanisms that regulate neurotransmitter receptors. These receptors mediate the response of neurons to neurotransmitters released at synapses and are a central convergence point for transmission of signals between neurons. Modulation of the function of these receptors is a powerful and efficient way to modulate synaptic communication and synaptic plasticity. Over the years we have shown that receptor protein phosphorylation and the regulation of the synaptic targeting of receptors are dynamically regulated and regulate the efficiency of synaptic transmission. We are currently focusing our efforts on the mechanisms that underlie the regulation of the glutamate receptors, the major excitatory neurotransmitter receptors in the brain. These receptors are neurotransmitter-dependent ion channels that allow ions to pass through the neuronal cell membrane, resulting in the excitation of neuronal activity.

Home |Research focus | Publications | Images | Protocols | Lab Tour | Lab members | Contact

Copyright 2007, The Huganir Lab