自分のページですよ。

課題1:近似曲線を描く

名古屋の月別降水量推移(2001年版)

 Excelで表示

1

2

3

4

5

6

7

8

9

10

11

12

降水量(mm)

43.2

64.1

115

143

156

202

218

140

250

117

79.5

36.8

            

Mathematicaで表示

points={{1,43.2},{2,64.1},{3,115.2},{4,143.3},{5,155.7},{6,201.5},{7,218},{8,140.4},{9,249.8},{10,116.9},{11,79.5},{12,36.8}};

plotpoints=ListPlot[points,PlotStyle®PointSize[0.01]];

Fit[points,{x^4,x^3,x^2,x,1},x]

plotline=Plot[%,{x,0,13}];

 

Show[plotpoints,plotline];

降水量(mm)

      

課題2:Mathematicaで3Dを描く

a=ParametricPlot3D[{u,Sin[t]/4,Cos[t]/2},{t,0,2Pi},{u,0,1.5}]

b=ParametricPlot3D[{u,Sin[t]/8,0.25+Cos[t]/8},{t,0,2Pi},{u,0,1.8}]

c=ParametricPlot3D[{u,Sin[t]/10,0.25+Cos[t]/10},{t,0,2Pi},{u,0,1.82}]

d=ParametricPlot3D[{1.5,u*Sin[t]/4,u*Cos[t]/2},{t,0,2Pi},{u,0,1}]

e=ParametricPlot3D[{u,Sin[t]/3.8,0.06+Cos[t]/2},{t,Pi/2,-Pi/2},{u,0,1.5}]

f=Show[Graphics3D[Cuboid[{1.53,0.1,0},{1,-0.1,-0.4}]]]

g=ParametricPlot3D[{t,0,u},{t,1.4,1.5},{u,0.5,0.58}]

h=Show[Graphics3D[Cuboid[{-1.5,0.3,0.6},{0,-0.3,-0.6}]]]

i=ParametricPlot3D[{u/100Cos[t]-0.07,u/100Sin[t]+0.04,u/50+0.7},{t,0,2Pi},{u,0,-2Pi},ViewPoint->{1,-1,99}]

j=ParametricPlot3D[{u/100Cos[t]-0.07,u/100Sin[t]-0.04,u/50+0.7},{t,0,2Pi},{u,0,-2Pi},ViewPoint->{1,-99,1}]

k=ParametricPlot3D[{Sin[t]/2.2+s,Cos[t]/2.2,-s},{t,0,2Pi},{s,0,-0.5}]

l=ParametricPlot3D[{u*Sin[t]/2.2,u*Cos[t]/2.2,0},{t,0,2Pi},{u,0,1}]

m=ParametricPlot3D[{u*Sin[t]/2.2-0.5,u*Cos[t]/2.2,0.5},{t,0,2Pi},{u,0,1}]

n=ParametricPlot3D[{Sin[t]/5+s+0.3,Cos[t]/5,-s-1.1},{t,0,2Pi},{s,0,-0.5},ViewPoint->{1,-99,1}]

o=ParametricPlot3D[{u*Sin[t]/5+0.3,u*Cos[t]/5,-1.1},{t,0,2Pi},{u,0,1}]

p=ParametricPlot3D[{u-1.5,Sin[t]/7-0.3,0.25+Cos[t]/7},{t,0,2Pi},{u,0,1.6}]

q=ParametricPlot3D[{u-1.5,Sin[t]/7+0.3,0.25+Cos[t]/7},{t,0,2Pi},{u,0,1.6}]

r=ParametricPlot3D[{u-3.5,Sin[t]/2,Cos[t]},{t,0,2Pi},{u,-1,1.5}]

s=ParametricPlot3D[{Cos[t]Cos[u]-2,Sin[t]Cos[u]/2,Sin[u]},{t,-1/2Pi,1/2Pi},{u,-Pi/2,Pi/2}]

t=ParametricPlot3D[{Sin[t]/3-s-1.5,Cos[t]/5,-s-1.2},{t,0,2Pi},{s,0.1,-0.9},ViewPoint->{1,-1,1}]

u=ParametricPlot3D[{u*Sin[t]/3.5-1.6,u*Cos[t]/5,-1.3},{t,0,2Pi},{u,0,1},ViewPoint->{1,-1,1}]

v=ParametricPlot3D[{Sin[t]/8-0.6,u,Cos[t]/7-0.65},{t,0,2Pi},{u,-0.05,0.05}]

w=ParametricPlot3D[{-4.5,u*Sin[t]/2,u*Cos[t]},{t,0,2Pi},{u,0,1}]

x=ParametricPlot3D[{Sin[t]/10-0.52,u,Cos[t]/9-0.63},{t,3/2Pi,Pi},{u,-0.03,0.03}]

Show[{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x},PlotRange®All,ViewPoint->{1,2,0.5}]

課題3:電気回路について調べ、まとめる

50Ωの抵抗と500mHのコイル、100μFのコンデンサーと並列につなげたものにv=50Sin(100t)の交流電圧をつなげたとき、各素子に流れる電流を図示せよ

Plot[{Sin[100t],Sin[100t-Pi/2],1/2Sin[100t+Pi/2]},{t,0,Pi/25},PlotStyle®{Hue[0],Hue[0.4],Hue[0.6]}]

電流(A

時間(s)

 黄緑:抵抗に流れる電流、  青:コイルに流れる電流、

  赤:コンデンサーに流れる電流

ホームページに戻るメールはこちらへ