’nŽ¥‹Cï—‚ð–Í‚µ‚½lH’´’áŽü”g“dŽ¥ê‚Ö‚Ì’·ŽžŠÔ”˜˜I‚Æ

—lX‚ȶ‘Ìî•ñ‚̕ϓ®«

 

Œõ• Œ³*A¶ÀKŽq*A‹v•Û–L*AŽR’† ’*A‘å’Ë–M–¾*A‘åì^ˆê˜Y*A

Germaine Cornélissen•, Franz Halberg•, James Wanliss˜

 

 

Does exposure to artificial ULF waves affect blood pressure and heart rate variability?

Gen Mitsutake*, Sachiko Oinuma*, Yutaka Kubo*, Takashi Yamanaka*, Kuniaki Otsuka*,

Sin-ichiro Ohkawa*, Germaine Cornélissen•, Franz Halberg•, James Wanliss˜,

 

*Tokyo Women's Medical Univ., Tokyo, Japan; •Univ. of Minnesota, Minneapolis, MN, USA; ˜Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

 

 

 

y–Ú“Iz@

‹ß”NA—}‚¤‚‚ð‚Í‚¶‚߂Ƃ·‚é¸_S—Šw“Ió‘Ô‚âS‹Ø‹•ŒŒ“™‚ÌS޾гA‚ ‚é‚¢‚Í”]ŒŒŠÇáŠQ‚Ì—Uˆø‚Æ‚µ‚ÄA’nŽ¥‹Cï—‚ð‚Í‚¶‚߂Ƃ·‚é“dŽ¥ê‚̉e‹¿‚ªŽw“E‚³‚ê‚邿‚¤‚ɂȂÁ‚Ä‚«‚½B‚»‚±‚Å–{Œ¤‹†‚ł͒nŽ¥‹Cï—‚ð–Í‚µ‚½’´’áŽü”gULF”g“dŽ¥ê‚Ö‚Ì’·ŽžŠÔi‚WŽžŠÔj–\˜I‚ªAS”•Ï“®EŒŒˆ³•Ï“®‚ð‚Í‚¶‚߂Ƃ·‚é—lX‚ȶ‘Ìî•ñ‚ÉA”@‰½‚È‚é‰e‹¿‚ð‹y‚Ú‚·‚©‚ɂ‚¢‚ÄŒŸ“¢‚µ‚½B—¼ŽÒŠÔ‚ɉ½‚ç‚©‚̈ö‰ÊŠÖŒW‚ªØ–¾‚³‚ê‚ê‚ÎA’nŽ¥‹CŠˆ“®‚ðl—¶‚É“ü‚ꂽS‹Ø[ÇESŒŒŠÇ•a”­Ç‚Ì—\’mE—\–h‚ª‰Â”\‚É‚È‚é‚ÆŠú‘Ò‚³‚ê‚éB‚·‚Ȃ킿A–{Œ¤‹†‚Ì–Ú“I‚Í’nŽ¥‹C–¬“®geomagnetic pulsations‚É‚àŠÜ‚Ü‚ê‚éA’´’áŽü”g“dŽ¥ê‚Ö‚Ì’·ŽžŠÔ–\˜I‚ªAƒqƒg‚É‚¨‚¯‚é—\‘ª§Œä‹@\‚É”@‰½‚È‚é‰e‹¿‚ð‹y‚Ú‚·‚©‚ðAŽÀŒ±“I‚ÉŒŸ’è‚·‚邱‚Ƃł ‚éB‹ï‘Ì“I‚É‚ÍA‹­“x30nT‚ÌlH“I‚È’´’áŽü”g(0.0016Hz‚¨‚æ‚Ñ0.1Hz)‚ւ̘A‘±‚WŽžŠÔ‚Ì”˜˜I‚ªAS”•Ï“®AŒŒˆ³•Ï“®‚ð‚Í‚¶‚߂Ƃ·‚é¶‘Ìî•ñ‚ÌŽžŠÔ\‘¢chronomics‚ð•ω»‚³‚¹“¾‚é‚©”Û‚©‚ðŽÀŒ±“I‚ÉŒŸØ‚·‚鎖‚É‚æ‚èA¶‘Ì—\‘ª§Œä‹@\‚É‹y‚Ú‚·’nŽ¥‹C̉e‹¿‚Ì—L–³‚ɂ‚¢‚ÄŒŸ“¢ElŽ@‚·‚éB

 

y•û–@z@

ƒJƒiƒ_‚ÌManitobaBWinnipeg‚É‚ ‚éƒ}ƒjƒgƒo‘åŠw‚É’Ê‚¤•½‹Ï”N—î29΂̌’í’jŽqŠw¶‚R–¼‚ªT1‰ñ24ŽžŠÔA‰„‚×12“úŠÔ‚ÌŒŒˆ³‚ÆS”•Ï“®‚̃‚ƒjƒ^ƒŠƒ“ƒO‚ð‚¨‚±‚È‚Á‚½B”팱ŽÒ‚Í‚U‚‚̈قȂ鎞ŠÔ‘Ñ‚ÉlH’´’áŽü”g“dŽ¥ê‚Ö‚Ì‚WŽžŠÔ˜A‘±”˜˜I‚Æ‹[Ž—”˜˜I‚ð‚»‚ê‚¼‚ê1‰ñ‚¸‚Ž󂯂½Bő勭“x–ñ30nTAŽü”g”0.0016Hz‚ÌlH“I‚È’´’áŽü”g(ULF”g)‚ւ̘A‘±”˜˜Ii‚Ü‚½‚Í‹[Ž—”˜˜Ij‚ÍELF”g‚ÆVLF”g‚݂̂ðŽÕ’f‚·‚鎥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚Ì’†‚Ås‚í‚ꂽBŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚Ì’†‚ɂ͖ػƒxƒbƒh(•90cmA’·‚³200 cm)‚R‘ä‚ðÝ’u‚µA’´’áŽü”g“dŽ¥ê‚ð”­¶‚³‚¹‚邽‚߂̔¼Œa92 cm‚̃wƒ‹ƒ€ƒzƒ‹ƒcEƒRƒCƒ‹ˆê‘΂ðA”팱ŽÒ‚̃xƒbƒh‚ð¶‰E—¼‘¤‚©‚狲‚ނ悤‚ÉÝ’u‚µ‚½B”팱ŽÒ‚Í–ˆT‚WŽžŠÔ‚Ì’´’áŽü”g“dŽ¥ê”˜˜I‚Æ‚»‚ê‚Ɉø‚«‘±‚­–ñ‚P‚UŽžŠÔi1“ú‡Œv‚QŽžŠÔ‚Ì’©E’‹E—[HŽžŠÔ‚𜂭j‚ðŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€“à‚̃xƒbƒh‚Ìã‚ʼn߂²‚µ‚½B

‚±‚ÌŠÔAS”•Ï“®AŒŒˆ³•Ï“®A‹C•ª‚Ì•]’èiPANASA STCIA SSSA Mood and Vigor scalejA‡–°‚ÌŽ¿AŽžŠÔ‚ÌŠ´Šo Time Estimationi60•b‚Ì—\‘ªjAŒõŽhŒƒ‚ɑ΂·‚锽‰ž‘¬“xA‘Á‰t•ª”å—ÊAg‘ÌŠˆ“®—ʂ̑ª’è‚ðs‚Á‚½B3–¼‚̔팱ŽÒ‚Ì‚¤‚¿2–¼‚ÌS”•Ï“®‚Ì‘ª’è‚ÍŒg‘ÑŒ^Ž©“®S”‘ª’è‘•’uSM50iƒtƒNƒ_“dŽqA“Œ‹žj‚ð—p‚¢‚ÄAŽc‚è‚Ì‚P–¼‚ÌS”•Ï“®‚Ì‘ª’è‚ÍGMSŽÐ‚̃AƒNƒeƒBƒuEƒgƒŒ[ƒT[AC-301‚ð—p‚¢‚Äs‚Á‚½BƒtƒNƒ_“dŽqSM50‚æ‚蓾‚ç‚ꂽS”•Ï“®ƒf[ƒ^‚ÍÅ‘åƒGƒ“ƒgƒƒs[–@ (MEM) ‚ð—p‚¢‚ÄA‚Ü‚½ƒAƒNƒeƒBƒuEƒgƒŒ[ƒT[AC-301(GMSŽÐ,“Œ‹ž)‚æ‚蓾‚ç‚ꂽS”•Ï“®ƒf[ƒ^‚Ícomplex demodulation–@ (CDM) [1] ‚ð—p‚¢‚ĉðÍ‚µ‚½BŒŒˆ³‚̃‚ƒjƒ^ƒŠƒ“ƒO‚ÍŒg‘ÑŒ^Ž©“®ŒŒˆ³‘ª’è‘•TM2421 (A&DŽÐ,“Œ‹ž) ‚ð—p‚¢‚Ä30•ª–ˆ‚És‚Á‚½B‚Ü‚½A‡–°ŽžiŒßŒã‚P‚PŽž~Œß‘O‚VŽžj‚𜂭“ú’†A‚SŽžŠÔ–ˆ‚É‘Á‰tÌŽæ‚ðŽÀŽ{‚µAˆê•ªŠÔ“–‚½‚è‚Ì‘Á‰t•ª”å—Ê‚ðŽZo‚µ‚½B

Še”팱ŽÒ‚ÌŠeƒZƒbƒVƒ‡ƒ“‚ÌŒŒˆ³‚Æ‘Á‰t•ª”å—¦‚ÌŠT“úƒŠƒYƒ€‚Ísingle@cosinor•ªÍ‚É‚æ‚èŽZo‚µA‚³‚ç‚Épopulation@mean@cosinor•ªÍ–@‚ð—p‚¢‚ÄA”팱ŽÒ‘S‘̂̊eƒZƒbƒVƒ‡ƒ“‚ÌŒŒˆ³‚Æ‘Á‰t•ª”å—¦‚Ì“ú“à•Ï“®•AMESOR‚¨‚æ‚Ñacrophase‚ðŽZo‚µ‚½‚Ì‚¿A‚” ŒŸ’肨‚æ‚Ñparameter test iŠëŒ¯—¦‚T“‚Ì—¼‘¤ŒŸ’èj ‚ð—p‚¢‚ÄA”˜˜IðŒ‰º‚Æ‹[Ž—”˜˜IðŒ‰º‚Å“¾‚ç‚ꂽƒf[ƒ^‚ÌŒQŠÔ”äŠr‚ð‚¨‚±‚È‚Á‚½B‚Ü‚½AS””(HR)‚¨‚æ‚ÑS”•Ï“®‚ÌŠeŽw•WiNNASDNNAULFAVLFALFAHFALF/HFj‚ɂ‚¢‚Ă͂P “ú–ˆ‚Ì•½‹Ï’l‚ðŽZo‚µA‚” ŒŸ’è‚ð—p‚¢‚Ä”˜˜IðŒ‚Æ‹[Ž—”˜˜IðŒ‚Æ‚ÌŠÔ‚ÅŒQŠÔ”äŠr‚ðs‚Á‚½B

‚È‚¨‚±‚ÌŽÀŒ±ŒŸ“¢‚Í“Œ‹ž—Žqˆã‰È‘åŠw‚È‚ç‚тɃ}ƒjƒgƒo‘åŠw‚Ì—Ï—ˆÏˆõ‰ï‚Ì‹–‰Â‚Ì‚à‚Æ‚ÉAŒÂl‚̃Cƒ“ƒtƒH[ƒ€ƒhƒRƒ“ƒZƒ“ƒg‚𓾂½ã‚Å‹s‚³‚ꂽB

 

yŒ‹‰Êz@

ŠT“úƒŠƒYƒ€‚ÍA“dŽ¥ê”˜˜IŽžA‹[Ž—”˜˜IŽž‚Ì‚¢‚¸‚ê‚ÌðŒ‚É‚¨‚¢‚Ä‚àAŽûkŠúŒŒˆ³isystolic blood pressure: SBPj(“dŽ¥ê”˜˜IŽž:P=0.001;@‹[Ž—”˜˜IŽž:P=0.003)AHR(“dŽ¥ê”˜˜IŽž:P<0.001;@‹[Ž—”˜˜IŽž:P<0.001)A‚¨‚æ‚Ñ‘Á‰t•ª”å—¦iflow ratej(“dŽ¥ê”˜˜IŽž:P<0.001;@‹[Ž—”˜˜IŽž:P<0.001) [2] ‚É‚¨‚¢‚Ä”F‚ß‚ç‚ꂽ (•\‚PŽQÆ) BŠg’£ŠúŒŒˆ³idiastolic blood pressure: DBPj‚ɂ‚¢‚Ă͋[Ž—”˜˜IŽž‚̂݊T“úƒŠƒYƒ€‚ª”F‚ß‚ç‚ꂽ(“dŽ¥ê”˜˜IŽž:P=0.141;@‹[Ž—”˜˜IŽž:P=0.012)B‚µ‚©‚µA‹C•ª‚̃f[ƒ^‚ÌŒ‹‰Ê [‚R] ‚Æ“¯—l‚ÉAŒŒˆ³AHRA‘Á‰t•ª”å—¦‚̂ǂ̕ϔ‚É‚¨‚¢‚Ä‚àA“dŽ¥ê”˜˜I‰º‚¨‚æ‚Ñ‹[Ž—”˜˜I‰º‚ÌŠT“úƒŠƒYƒ€‚É‚¨‚¯‚é—LˆÓ·‚Í”F‚ß‚ç‚ê‚È‚©‚Á‚½ (•\2ŽQÆ)B“¯—l‚ÉAHR‚¨‚æ‚ÑS”•Ï“®‚ÌŠeŽw•W ( NNASDNNAULFALFAHFALF/HF)‚Ì‚P “ú–ˆ‚Ì•½‹Ï’l‚É‚¨‚¢‚Ä‚àA“dŽ¥ê”˜˜I‰º‚¨‚æ‚Ñ‹[Ž—”˜˜I‰º‚̊Ԃł̗LˆÓ·‚Í”F‚ß‚ç‚ê‚È‚©‚Á‚½ (•\3ŽQÆ)B

ŽžŠÔ‚ÌŠ´ŠoiTime Estimationj‚ÍA”˜˜I‘OE“dŽ¥ê”˜˜Ii‚ ‚é‚¢‚Í‹[Ž—”˜˜IjŽžE”˜˜IŒãA’·‚­‚È‚éŒXŒü‚ªŠÏŽ@‚³‚ꂽB‚·‚Ȃ킿A”˜˜I‘OE“dŽ¥ê”˜˜IŽžE”˜˜IŒã‚ÌTime Estimation‘ª’è’li•½‹Ï’lA•W€•ηj‚ÍŠeXA58.1 (3.7)sec, 59.1 (6.3) sec, 60.3 (6.7) sec (p<0.10, Kruskal WallisŒŸ’è)B”˜˜I‘OE‹[Ž—”˜˜IŽžE”˜˜IŒã‚ÌTime Estimation‘ª’è’li•½‹Ï’lA•W€•ηj‚ÍŠeXA57.5 (3.6) sec, 61.6 (4.8) sec, 59.5 (4.3) sec (p<0.01, Kruskal WallisŒŸ’è) ‚Å‚ ‚Á‚½B

 

ylŽ@z@

’nŽ¥‹Cï—‚ð–Í‚µ‚½’´’áŽü”gULF”g“dŽ¥ê‚Ö‚Ì’·ŽžŠÔi‚WŽžŠÔj–\˜I‚ÍAS”•Ï“®EŒŒˆ³•Ï“®‚ð‚Í‚¶‚߂Ƃ·‚é—lX‚ȶ‘Ìî•ñ‚Ìcircadian rhythm‚ÉA‰½‚ç—LˆÓ‚̉e‹¿‚ð‹y‚Ú‚³‚È‚©‚Á‚½B‚±‚ÌŒ‹‰Ê‚ÍA‚±‚ê‚܂łɌŸ“¢‚µ‚Ä‚«‚½’nŽ¥‹CŠˆ“®‚ƶ‘Ìî•ñŽžŒn—ñƒf[ƒ^‚Ƃ̃Rƒq[ƒŒƒ“ƒX‰ð̬͂тƈê’v‚µ‚Ä‚¢‚é [4]Bˆê•ûA’´’áŽü”gULF”g“dŽ¥ê‚ÍA¶‘ÌŒ»Û‚Ì\”•ª‚©‚甎žŠÔ’PˆÊ‚ÌU“®¬•ª‚ɉe‹¿‚·‚é‰Â”\«‚ªŽ¦´‚³‚ꂽB‚±‚ê‚܂ł̌Ÿ“¢Œ‹‰Ê‚ƈê’v‚·‚é¬Ñ‚ÆŒ¾‚¦‚é [5, 6]B

‚µ‚©‚µA¡‰ñ‚ÌŽÀŒ±ƒvƒƒgƒR[ƒ‹‚É‚¨‚¯‚é‚¢‚­‚‚©‚Ì•s”õ‚ª‚ ‚Á‚½‚±‚Æ‚ª”½È‚³‚ê‚éB‘æˆê‚ÉAŽÀŒ±‚ÉŽg—p‚³‚ê‚½Ž¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚Í’nŽ¥–¬“®‚É‚æ‚莩‘R”­¶‚·‚éULF”g‚ðŽÕ•Á‚·‚é‚à‚̂ł͂Ȃ©‚Á‚½B‘æ“ñ‚Ì–â‘è“_‚ÍA¶‘Ì‚ÉÅ‚à‘å‚«‚­‰e‹¿‚·‚é’nŽ¥‹CƒxƒNƒgƒ‹‚ɂ‚¢‚Ă̌Ÿ“¢‚ª•s\•ª‚Å‚ ‚é“_‚Å‚ ‚éBŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€“à‚ÅlH“I‚É”­¶‚³‚¹‚½Ž¥ê‚Í’n–ʂɑ΂µ‚Ä…•½‚Å‚ ‚Á‚½B‚·‚Ȃ킿AŽ¥ê•ûŒü‚ÍA…•½•ûŒüƒxƒNƒgƒ‹‚݂̂ł̌Ÿ“¢‚Å‚ ‚Á‚½B¡‰ñŽg—p‚µ‚½lHULF”g‚ÍAŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚̑傫‚³A‚¨‚æ‚ÑŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€“à‚ÅŽg‚í‚ꂽƒxƒbƒh‚ÆAƒwƒ‹ƒ€ƒzƒ‹ƒcEƒRƒCƒ‹‚̃ŒƒCƒAƒEƒg‚Ȃǂðl—¶‚É“ü‚ꂽ‚½‚ßA’n–ʂɑ΂µ‚Ä•½s‚ÈŽ¥ê‚ðŒ`¬‚·‚邿‚¤‚Ƀwƒ‹ƒ€ƒzƒ‹ƒcƒRƒCƒ‹‚ðÝ’u‚¹‚´‚é‚𓾂Ȃ©‚Á‚½B‚»‚Ì‚½‚ß’nŽ¥‹C‚Ì”@‚­A‚’¼ƒxƒNƒgƒ‹‚ðŠÜ‚ÞŠeŽíƒxƒNƒgƒ‹Ž¥ê•Ï“®A‚ ‚é‚¢‚Í’nŽ¥‹C‚É‚¨‚¯‚éD¬•ªA‚ÌŒŸ“¢‚ª‚Å‚«‚Ä‚¢‚È‚¢Œ‡“_‚ª‚ ‚éB‘æŽO‚ÉAŽg—p‚µ‚½“dŽ¥ê‚Ì‹­“xAŽü”g”A”˜˜IŽžŠÔ‚ª‰Ê‚½‚µ‚ÄŠT“úƒŠƒYƒ€‚ɉe‹¿‚ð‹y‚Ú‚·‚Ì‚É[•ª‚©‚“K؂ł ‚Á‚½‚©‚Ç‚¤‚©‚Í‹^–â‚Å‚ ‚éB­‚È‚­‚Æ‚àˆÈã‚Ì”@‚­‚¢‚­‚‚©‚Ì–â‘è“_‚ª‘¶Ý‚·‚邱‚Æ‚ÍA¡‰ñ‚ÌŽÀŒ±‚ÅlH“I‚É쬂µ‚½ULF”g‚ªA’nŽ¥‹Cï—‚É–Í‚µ‚½“dŽ¥ê‚Å‚ ‚Á‚½‚©‚ɂ‚¢‚Ä¡ŒãŒŸ“¢‚Ì—]’n‚ðŽc‚µ‚Ä‚¢‚éB

ŽÀŒ±Œv‰æ‚É‚à‚¢‚­‚‚©‚Ì”½È“_‚ª‚ ‚éB”˜˜I‘O‚Ì‘ÎÆƒf[ƒ^‹L˜^‚Ì‚½‚߂̎žŠÔ‘Ñ‚Ìݒ肪•s\•ª‚Å‚ ‚Á‚½‚±‚Æ‚ª‚»‚ÌÅ‚½‚é‚à‚̂ł ‚éB‚Ü‚½A”˜˜IŽžŠÔ‘Ñ‚Ìݒ肪‰Ê‚½‚µ‚đÓ–‚Å‚ ‚Á‚½‚©‚ÌlŽ@‚ª•K—v‚Å‚ ‚邪A”˜˜IŽž‚̉e‹¿‚ðlŽ@‚·‚邽‚ß‚É\•ª‚ȗᔂªŒŸ“¢‚³‚ê‚Ä‚¢‚È‚¢Bˆê•ûA¡‰ñ‚ÌŽÀŒ±‚Ì“Á’·‚Æ‚µ‚Ä‚ÍAŽ¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚ðŽg—p‚µ‚½‚±‚Ƃɂæ‚Á‚ÄA3l‚̔팱ŽÒ‚̶‘ÌƒŠƒYƒ€‚ð’·ŽžŠÔA‚Ù‚Ú“¯‚¶ðŒ‰º‚Ń‚ƒjƒ^[‚·‚邱‚Æ‚ª‚Å‚«‚½“_‚Å‚ ‚éB¡‰ñ‚ÌŽÀŒ±ŒoŒ±‚ð‚à‚Æ‚ÉA¡Œã‚ÍA’nŽ¥‹C–¬“®geomagnetic pulsations‚ð‚æ‚è³Šm‚ÉÄŒ»‚·‚邽‚߂̃wƒ‹ƒ€ƒzƒ‹ƒcEƒRƒCƒ‹‚ÌŠJ”­‚ÆA”˜˜IŽÀŒ±’¼‘O‚ÌÅIŠm”F—p‚Ì‘ÎÆ‹L˜^•\‚Ìì¬AULF”g‚ðŽÕ•Á‰Â”\‚ÅA’¼Œa‚¨‚æ‚»‚Sƒ[ƒgƒ‹‚̃wƒ‹ƒ€ƒzƒ‹ƒcEƒRƒCƒ‹‚ð“ªã‚ư‚ÉÝ’u‚Å‚«A“ú’†‚̔팱ŽÒ‚Ì“®‚«‚ðS‘©‚µ‚È‚¢L‚¢Ž¥‹CƒV[ƒ‹ƒhEƒ‹[ƒ€‚ÌŠm•ÛA”팱ŽÒ‚Ì‘ˆõ‚Ȃǂɂæ‚èŽÀŒ±ŠÂ‹«‚¨‚æ‚ÑŽÀŒ±Œv‰æ‚̉ü‘P‚ð}‚肽‚¢B

 

Acknowledgements:

This study was supported by the Japan Arteriosclerosis Prevention Fund, and Hokkaido Institute of Public Health Grant (Studies on Age-related Dysregulation in Circulatory, Nervous and Immune Systems).

 

 

y•¶Œ£z

1.    Hayano J, Taylor JA, Mukai S, Okada A, Watanabe Y, Takata K, Fujinami T. Assessment of frequency shifts in R-R interval variability and respiration with complex demodulation. Journal of Applied Physiology 1994; 77: 2879-2888.

2.    Dawes C. Circadian rhythms in the flow rate and composition of unstimulated and stimulated human submandibular saliva. Journal of Physiology 1975; 244: 535-548.

3.    Mitsutake G, Cornélissen G, Otsuka K, Wanliss J, Halberg F. Does exposure to artificial ULF waves affect blood pressure and heart rate variability? Proceedings, 2nd International Symposium, Workshop on Chronoastrobiology & Chronotherapy (Satellite Symposium, 8th Annual Meeting, Japanese Society for Chronobiology), Kudan, Chiyodaku, Tokyo, 17 Nov 2001, pp. 40-41.

4.    Otsuka K, Ichimaru Y, Cornelissen G, Weydahl A, Holmeslet B, Schwartzkopff O, Halberg F: Dynamic analysis of heart rate variability from 7-day Holter recordings associated with geomagnetic activity in subarctic area.@ Computers in Cardiology 2000; 27:453-456.

5.    Otsuka K, Cornelissen G, Weydahl A, Holmeslet B, Hansen TL, Shinagawa M, Kubo Y, Nishimura Y, Omori K, Yano S, Halberg F: Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother 2001; 55:51-56.

6.    Otsuka K, Oinuma S, Cornelissen G, Weydahl A, Ichimaru Y, Kobayashi M, Yano S, Holmeslet B, Hansen TL, Mitsutake G, Engebretson MJ, Schwartzkopff O, Halberg: Alternating light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations. Biomed Pharmacother 2001; 55:63-75.


•\ 1

 

PR (%)

P

MESOR

Amplitude

Acrophase

(95%C.I.)

‹[Ž—”˜˜I

(%)

(Ho: A=0)

}SE

(95%C.I.)

(360‹=24h; 0‹=00:00)

 

SBP

19

0.003

114.691}3.75

5.27

(2.78, 7.76)

-273

(-239, -298)

 

DBP

13

0.012

72.05}3.39

2.85

(1.25, 4.44)

-256

(-224, -294)

 

HR

19

<0.001

60.831}2.81

5.63

(3.60, 7.66)

-266

(-251, -289)

 

Flow Rate

46

<0.001

0.289}0.05

0.11

(0.07, 0.14)

-256

(-235, -289)

“dŽ¥ê”˜˜I:

 

 

 

 

 

 

 

 

SBP

22

0.001

114.579}4.18

5.54

(3.18, 7.90)

-271

(-250, -294)

 

DBP

13

0.141

73.355}3.58

2.47

(0,@ 0)

-230

(0, 0)

 

HR

22

<0.001

62.174}2.22

6.94

(5.02, 8.86)

-270

(-255, -285)

 

Flow Rate

58

<0.001

0.244}0.04

0.11

(0.07, 0.14)

-251

(-238, -270)

•\ 2

 

 

“dŽ¥ê”˜˜I

 

‹[Ž—”˜˜I

 

t-test

 

 

Mean

N

SD

 

Mean

N

SD

 

@@@ t

df

@@@@@@@ P

SBP

 

 

 

 

 

 

 

 

 

 

 

 

MESOR

73.10

12

5.91

 

72.05

12

5.33

 

1.02

11

0.329

 

Amplitude

4.62

12

2.33

 

4.15

12

1.80

 

0.59

11

0.570

 

Acrophase

-245.17

12

50.54

 

-219.50

12

81.94

 

-0.74

11

0.474

DBP

 

 

 

 

 

 

 

 

 

 

 

 

MESOR

73.10

12

5.91

 

72.05

12

5.33

 

1.02

11

0.329

 

Amplitude

4.62

12

2.33

 

4.15

12

1.80

 

0.59

11

0.570

 

Acrophase

-245.17

12

50.54

 

-219.50

12

81.94

 

-0.74

11

0.474

HR

 

 

 

 

 

 

 

 

 

 

 

 

MESOR

62.56

12

4.34

 

60.83

12

4.42

 

1.26

11

0.233

 

Amplitude

7.42

12

2.83

 

6.34

12

2.93

 

0.88

11

0.400

 

Acrophase

-274.83

12

25.08

 

-276.83

12

34.16

 

0.19

11

0.854

Flow Rate

 

 

 

 

 

 

 

 

 

 

 

 

MESOR

0.24

15

0.08

 

0.29

15

0.09

 

-1.74

14

0.104

 

Amplitude

0.12

15

0.06

 

0.13

15

0.06

 

-0.51

14

0.619

 

Acrophase

-256.00

15

35.26

 

-264.13

15

37.91

 

0.62

14

0.548

•\ 3

“dŽ¥ê”˜˜I

 

‹[Ž—”˜˜I

 

t-test

Item

Mean

N

SD

 

Item

Mean

N

SD

 

@ t

df

@@ P

HR

69.75

5

3.63

 

HR

68.07

5

6.54

 

0.653

4

0.549

NN

898.97

5

30.99

 

NN

916.27

5

60.08

 

-0.564

4

0.603

SDNN

72.15

5

11.85

 

SDNN

76.16

5

10.80

 

-0.918

4

0.411

ULF

64.85

5

6.60

 

ULF

72.41

5

7.17

 

-1.491

4

0.210

LF

38.62

5

6.14

 

LF

41.16

5

7.91

 

-0.860

4

0.438

HF

28.46

5

6.78

 

HF

30.72

5

8.12

 

-0.954

4

0.394

LF/HF

1.50

5

0.21

 

LF/HF

1.49

5

0.22

 

0.467

4

0.665

-