Â裸²ó ¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç ±é½¬

¡Ú±é½¬¤ÎÃí°Õ»ö¹à¡Û¤òÎɤ¯ÆÉ¤ó¤Ç²òÅú¤·¤Æ¤¯¤À¤µ¤¤


ÇÛÎó¡Ê£²¡Ë

¡Ú¼ç¤ÊÆâÍÆ¡Û

±é½¬²ÝÂê

°Ê²¼¤ÎÎãÂê¤È¡¢£³¤Ä¤Î¥ì¥Ù¥ë (½éµé¥ì¥Ù¥ë, Ãæµé¥ì¥Ù¥ë, ¾åµé¥ì¥Ù¥ë) ¤ÎÁ´¤Æ¤Î ²ÝÂê ¤Ë²òÅú¤·¤Ê¤µ¤¤¡£³Æ¡¹¤Î²ÝÂêËè¤Ë¥Õ¥¡¥¤¥ë¤òºîÀ®¤·¤Ê¤µ¤¤¡£

º£²ó¤Î²ÝÂê¤ÏÁ´¤ÆC¸À¸ì¤Î¥×¥í¥°¥é¥à¥Õ¥¡¥¤¥ë¤ÇÄó½Ð¤¹¤ë¤â¤Î¤Ç¤¹¡£ £³¤Ä¤Î¥ì¥Ù¥ë¤Î¾¤Ë¡¢ºÎÅÀÂоݳ°¤Î¥ª¥×¥·¥ç¥óÌäÂ꤬¤¢¤ê¤Þ¤¹¡£ À§Èó¥Á¥ã¥ì¥ó¥¸¤·¤Æ¤ß¤Æ¤¯¤À¤µ¤¤¡£ ³Æ²ÝÂê¤Ë¤Ï¥Õ¥¡¥¤¥ë̾¤¬»ØÄꤷ¤Æ¤¢¤ë¤Î¤Ç¡¢¤½¤Î»Ø¼¨¤Ë¤·¤¿¤¬¤Ã¤Æ²¼¤µ¤¤¡£

¤Ê¤ª¡¢¼Â¹ÔÎã¤ä¥³¥Þ¥ó¥É¤Ê¤É¤ÇÀÖ¿§¤Î»ú¤Ï¥­¡¼¥Ü¡¼¥É¤«¤é ÆþÎϤ·¤¿¤â¤Î¡¢¿¼ÎФλú¤Ï¥³¥ó¥Ô¥å¡¼¥¿¤«¤é¤Îɽ¼¨¤ò¼¨¤·¤Æ¤¤¤Þ¤¹¡£ ¤Þ¤¿¡¢%¤Ï¥×¥í¥ó¥×¥È¡Ê³§¤µ¤ó¤Î´Ä¶­¤Ç¤Ï std1dc1{s1100000}1:Åù¤ËÁêÅö¤¹¤ë¡Ë¤ò¼¨¤·¤Æ¤ª¤ê¡¢ ³§¤µ¤ó¤¬ÆþÎϤ¹¤ë¤Î¤Ï¤½¤Î¼¡¤Îʸ»ú¤«¤é¤Ë¤Ê¤ê¤Þ¤¹¡£

ÎãÂê

¹ÖµÁ»ñÎÁ¡Ê¥Ï¥ó¥É¥¢¥¦¥È¡Ë¤ÎÎãÂê lec08-1.clec08-2.clec08-3.clec08-4.clec08-5a.clec08-5b.clec08-5c.c  ¤Î¥½¡¼¥¹¥×¥í¥°¥é¥à¤ò¥³¥Ô¡¼¤·¡¢¤½¤Î¥×¥í¥°¥é¥à¤Îưºî¤òͽ¬¤·¤¿¾å¤Ç¡¢¥³¥ó¥Ñ¥¤¥ë¡¦¼Â¹Ô¤ò»î¤·¤Æ¤ß¤Ê¤µ¤¤¡£

¥³¥Ô¡¼¤ÎÊýË¡:
% cd ~/Prog0/Ex08
% cp /home/course/prog0/public_html/2007/lec/source/lec08-*.c .

½éµé¥ì¥Ù¥ë

(A-1)
¼¡¤Î¥×¥í¥°¥é¥à¤Ï£³x£³¤ÎÇÛÎó¤ÎÁ´¤ÆÍ×ÁǤËÃͤòÆþ¤ì¤è¤¦¤È¤·¤Æ¤¤¤Þ¤¹¤¬¡¢ ¸í¤ê¤¬¤¢¤ê¤Þ¤¹¡£¤Þ¤º¡¢²¼µ­¤Î¥×¥í¥°¥é¥à¤ò¤½¤Î¤Þ¤Þ¼Â¹Ô¤·¤Ê¤µ¤¤¡£ ¤½¤Î·ë²Ì¤È°Ê²¼¤Î¼Â¹ÔÎã¤òÈæ³Ó¸¡Æ¤¤·¡¢¸í¤ê¤ò½¤Àµ¤·¤¿¥×¥í¥°¥é¥à¤òºîÀ®¤·¤Ê¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08a1.c
#include <stdio.h>

main()
{
  int i, j, val[3,3];

  for (i=0; i<3; i++){
    for (j=0; j<3; j++){
      val[i,j]=(i+1)*(j+1);
    }
  }
  for (i=0; i<=3; i++){
    for (j=0; j<=3; j++){
      printf(" %d ", val[i,j]);
    }
    printf("\n");
  }

}

[¼Â¹ÔÎã]
%./a.out
 1 2 3
 2 4 6
 3 6 9




(A-2)
¼¡¤Î¥×¥í¥°¥é¥à¤Î¸í¤ê¤ò½¤Àµ¤·¡¢¼Â¹ÔÎã¤Î¤è¤¦¤Ë¡¢¹ÔÎó¡ÊÇÛÎó¡Ë¤Î¼çÂгÑÀþ ¤Ë¤¢¤ëÍ×ÁÇÃÍ(a11, a22, a33) ¤òɽ¼¨¤¹¤ë¥×¥í¥°¥é¥à¤òºîÀ®¤·¤Ê¤µ¤¤¡£Ã¢¤·¡¢Åº»ú¤Î¿ô¤Ï½ç¤Ë¹Ô¿ô/Îó¿ô¤òɽ¤·¤Þ¤¹¡£

¥Õ¥¡¥¤¥ë̾¡§ex08a2.c

[¼Â¹ÔÎã]
%./a.out
¹ÔÎó¤Î¼çÂгÑÀþ¤Ë¤¢¤ëÍ×ÁÇÃͤϲ¼µ­¤ÎÄ̤ê¤Ç¤¹¡§
 1 5 9




(A-3)
¼¡¤Î¥×¥í¥°¥é¥à¤Î²¼ÀþÉô¤òÊ䤤¡¢¼Â¹ÔÎã¤Î¤è¤¦¤Ë¶å¶å¤òɽ¼¨¤¹¤ë ¥×¥í¥°¥é¥à¤ò´°À®¤µ¤»¤Ê¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08a3.c

[¼Â¹ÔÎã]
%./a.out
  1  2  3  4  5  6  7  8  9
  2  4  6  8 10 12 14 16 18
  .
  .
  .
  9 18 27 36 45 54 63 72 81





Ãæµé¥ì¥Ù¥ë

(B-1)
²¼µ­¤Î¼Â¹ÔÎã¤Î¤è¤¦¤Ë¥­¡¼¥Ü¡¼¥É¤«¤é10°Ê²¼¤Î ÇÛÎó¥µ¥¤¥º¡Ê½Ä¡ß²£¡Ë¤È³ÆÍ×ÁÇÃͤòÆþÎϤ·¡¢²èÌ̤˽ÐÎϤ¹¤ë¥×¥í¥°¥é¥à¤ò ºî¤ê¤Ê¤µ¤¤¡£¤Ê¤ª¡¢ÍѰդ¹¤ëÇÛÎó¤Î¥µ¥¤¥º¤Ï£±£°x£±£°¤È¤·¤Þ¤¹¡£

¥Õ¥¡¥¤¥ë̾¡§ex08b1.c

[¼Â¹ÔÎã]
%./a.out
£²¼¡¸µÇÛÎóa¤Î¹Ô¿ô¡¢Îó¿ô¤òÆþÎϤ·¤Æ¤¯¤À¤µ¤¤¡§3 4
ÇÛÎóa¤ÎÍ×ÁÇÃͤòº¸¤«¤é±¦¡¢¾å¤«¤é²¼¤Î½ç¤ÇÆþÎϤ·¤Æ¤¯¤À¤µ¤¤¡§1 2 3 4 5 6 7 8 9 10 11 12
ÇÛÎóa¤ÎÍ×ÁÇÃͤòɽ¼¨¤·¤Þ¤¹

  a[0][0]= 1  a[0][1]= 2  a[0][2]= 3  a[0][3]= 4
  a[1][0]= 5  a[1][1]= 6  a[1][2]= 7  a[1][3]= 8
  a[2][0]= 9  a[2][1]=10  a[2][2]=11  a[2][3]=12





(B-2)
£³x£³¹ÔÎó¤Î³ÆÍ×ÁǤò¤¢¤ëÀ°¿ô¤È³Ý¤±»»¤·¤¿¸å¡¢ ¤½¤Î¹ÔÎó¤òɽ¼¨¤¹¤ë¥×¥í¥°¥é¥à¤òºî¤ê¤Ê¤µ¤¤¡£
⤷¡¢Ç¤°Õ¤Î n x n ¤ÎÀµÊý¹ÔÎó¤Ë¤¹¤°½ñ¤­´¹¤¨¤é¤ì¤ë¤è¤¦¡¢ ¹ÔÎó¤ÎÂ礭¤µ¤ÏÄê¿ô¥Þ¥¯¥íÄêµÁ¤Ç¥×¥í¥°¥é¥à¤Î½é¤á¤ËÀë¸À¤¹¤ë¤³¤È¡£

¥Õ¥¡¥¤¥ë̾¡§ex08b2.c

[¼Â¹ÔÎã]
%./a.out
£³¹Ô£³Îó¤Î¹ÔÎó¤òÀ°¿ôÃÍ¤ÇÆþÎϤ·¤Æ²¼¤µ¤¤
1 2 3
4 5 6
7 8 9
¹ÔÎó¤ò²¿Çܡʥ¹¥«¥é¡¼Çܡˤ·¤Þ¤¹¤«¡© 2

ÇÛÎóÍ×ÁǤòɽ¼¨¤·¤Þ¤¹¡£
  2  4  6
  8 10 12
 14 16 18




(B-3)
¼Â¹ÔÎã¤Î¤è¤¦¤ËǤ°Õ¤Î£³x£´¹ÔÎó¤ò£¶x£²¹ÔÎó¤ËÊÑ´¹¤¹¤ë¥×¥í¥°¥é¥à¤ò¹Í¤¨¤Þ¤¹¡£
¹ÔÎó¤ÎÍ×ÁǤϣ²·å¤Þ¤Ç¤Î¥¼¥í¤Þ¤¿¤ÏÀµ¤ÎÀ°¿ô¤È¤·¡¢¤½¤ì¤¾¤ì¤ò ³ÊǼ¤¹¤ë¤¿¤á¤ÎÆó¤Ä¤ÎÇÛÎó in_mat[3][4], out_mat[6][2]¤òÀë¸À¤·¤Æ¤¯¤À¤µ¤¤¡£
Æþ½ÐÎϺî¶È¤Ë¤Ï¥ë¡¼¥×¤òÍѤ¤¤ë¤³¤È¡£¤Þ¤¿¡¢Æþ½ÐÎϹÔÎóÍ×ÁÇÆ±»Î¤ÎÂбþ´Ø·¸ ¤ò¤è¤¯¹Í¤¨¤Æ¡¢ÂåÆþʸ out_mat[m][n]=in_mat[i][j]¤ò´Þ¤à¥×¥í¥°¥é¥à¤òºî¤ê¤Ê¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08b3.c

[¼Â¹ÔÎã]
%./a.out
£³¹Ô£´Îó¤Î¹ÔÎó¤òÀ°¿ôÃÍ¤ÇÆþÎϤ·¤Æ²¼¤µ¤¤¡£ 
0 1 2 3 
10 11 12 13
20 21 22 23

£¶¹Ô£²Îó¤ËÊÑ´¹¤·¤¿¹ÔÎó¤òɽ¼¨¤·¤Þ¤¹¡£
 0  1
 2  3
10 11
12 13
20 21
22 23





¾åµé¥ì¥Ù¥ë

(C-1)
°Ê²¼¤Î»ÅÍͤòËþ¤¿¤¹¥×¥í¥°¥é¥à¤òºîÀ®¤·¤Ê¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08c1.c

»ÅÍÍ¡§
­¡£±£°x£³¤ÎÇÛÎó¤òÍѰդ·¡¢³Æ¹Ô¤Î ¤¹¤Ê¤ï¤Á¡¢ÇÛÎó¤ÎÍ×ÁÇÃͤϰʲ¼¤Î¤è¤¦¤Ë¤Ê¤ë
1    1     1
2    4     8
3    9    27
4    16   64
     ¡§
­¢¥­¡¼¥Ü¡¼¥É¤«¤é£³¾èÃͤòÆþÎϤ·¡¢¤½¤ÎÃͤò¥Æ¡¼¥Ö¥ë¡ÊÇÛÎó¡Ë¤«¤éõ¤·¡¢
[¼Â¹ÔÎã]
%./a.out
£³¾èÃͤòÆþÎϤ·¤Æ¤¯¤À¤µ¤¤¡ª512
512¤Î£³¾èº¬ ¡á 8
8¤Î£²¾è ¡á 64
%./a.out
£³¾èÃͤòÆþÎϤ·¤Æ¤¯¤À¤µ¤¤¡ª12
³ºÅöÃͤ¬¤¢¤ê¤Þ¤»¤ó




(C-2)
°Ê²¼¤Î¼ê½ç¤Ë½¾¤¤¡¢ÆþÎϤµ¤ì¤¿¹ÔÎó¤ÎžÃÖ¹ÔÎó¤òɽ¼¨¤¹¤ë¥×¥í¥°¥é¥à¤òºî¤ê¤Ê¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08c2.c
  1. ¹ÔÎó¡ÊÇÛÎó¡Ë¤ÎºÇÂç¹Ô¿ô¤ÈºÇÂçÎó¿ô¤òɽ¤¹Äê¿ô¤ò#define¤ò»ÈÍѤ·¤ÆÀë¸À¤¹¤ë
  2. #define¤ÇÀë¸À¤·¤¿Äê¿ô¤ò»ÈÍѤ·¤Æ¡¢¹ÔÎó¤òɽ¤¹ÇÛÎó¤òÀë¸À¤¹¤ë
  3. ÆþÎϹÔÎó¤Î¹Ô¿ô¤ÈÎó¿ô¤ò¡¤¥­¡¼¥Ü¡¼¥É¤«¤éÆþÎϤ¹¤ë
  4. ¹ÔÎóÍ×ÁÇÃͤò¡¤¥­¡¼¥Ü¡¼¥É¤«¤éÆþÎϤ¹¤ë
  5. ÆþÎϹÔÎó¤ò¤½¤Î¤Þ¤Þɽ¼¨¤¹¤ë
  6. žÃÖ¹ÔÎó¤òɽ¼¨¤¹¤ë
[¼Â¹ÔÎã]
%./a.out
¹Ô¿ô¤ÈÎó¿ô¤ò¶õÇò¤Ç¶èÀÚ¤Ã¤ÆÆþÎϤ·¤Æ¤¯¤À¤µ¤¤¡á3 5
3¹Ô5Îó¤Î¹ÔÎó¤ò¶õÇò¤Ç¶èÀڤäÆÀ°¿ôÃÍ¤ÇÆþÎϤ·¤Æ²¼¤µ¤¤
1 2 3 4 5
3 4 5 6 7
5 6 7 8 9

ÆþÎϹÔÎó¤òɽ¼¨¤·¤Þ¤¹¡£
  1   2   3   4   5
  3   4   5   6   7
  5   6   7   8   9

žÃÖ¹ÔÎó¤òɽ¼¨¤·¤Þ¤¹¡£
  1   3   5
  2   4   6
  3   5   7
  4   6   8
  5   7   9




(C-3)
£³x£²¹ÔÎó A ¤È£²x£³¹ÔÎó B ¤ÎÀÑ C = AB¤òµá¤á¤ë¥×¥í¥°¥é¥à¤òºîÀ®¤·¤Ê¤µ¤¤¡£
⤷¡¢¹ÔÎó A¡¢B ¤Î³ÆÍ×ÁÇÃͤϥ­¡¼¥Ü¡¼¥É¤«¤éÆþÎϤ¹¤ë¤â¤Î¤È¤¹¤ë¡£

¥Õ¥¡¥¤¥ë̾¡§ex08c3.c

¹ÔÎóA,B, C ¤ÎÍ×ÁǤò¤½¤ì¤¾¤ìa[i][j], b[i][j], c[i][j]¤Çɽ¤¹¤È¡¢ Í×ÁÇ c[i][j] ¤Î·×»»¼°¤Ï²¼µ­¤Î¤è¤¦¤Ë¤Ê¤ë¡£

c [ i ][ j ] = a [ i ][ 0 ] * b [ 0 ][ j ] + a [ i ][ 1 ] * b [ 1 ][ j ]¡¡( i, j = 0, 1, 2 )

[¼Â¹ÔÎã]
%./a.out
£³x£²¹ÔÎóA¤òÀ°¿ôÃÍ¤ÇÆþÎϤ·¤Æ²¼¤µ¤¤
1 2
3 4
5 6
£²x£³¹ÔÎóB¤òÀ°¿ôÃÍ¤ÇÆþÎϤ·¤Æ²¼¤µ¤¤
1 2 3
4 5 6
ÀÑ C = AB ¤òɽ¼¨¤·¤Þ¤¹¡£
  9  12  15
 19  26  33
 29  40  51





¥ª¥×¥·¥ç¥óÌäÂê¡ÊºÎÅÀÂоݳ°¡Ë

(D-1)
°Ê²¼¤Î¥µ¥ó¥×¥ë¥×¥í¥°¥é¥à¤È¤·¤ÆÍ¿¤¨¤ë¡û¡ß¥²¡¼¥à¤ÏÉÔ´°Á´¤Ç¤¹¡£
¤Á¤ã¤ó¤È¤·¤¿¥²¡¼¥à¤Ë¤Ê¤ë¤è¤¦¤Ë²þÎɤ·¤Æ²¼¤µ¤¤¡£

¥Õ¥¡¥¤¥ë̾¡§ex08d1.c

¹Íθ¤¹¤Ù¤­¹àÌܤò¾å¤²¤Æ¤ª¤­¤Þ¤¹¤Î¤Ç¡¢¤É¤Î¹àÌܤËÂбþ¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¤« ¥½¡¼¥¹¥×¥í¥°¥é¥àÆâ¤Ë¥³¥á¥ó¥È¤òÆþ¤ì¤Æ¤ª¤¤¤Æ²¼¤µ¤¤¡£
  1. ºÂɸÆþÎϤκݡ¢È×Ì̾å¡ÊÇÛÎó¤ÎÈÏ°ÏÆâ¡Ë¤Ç¤¢¤ë¤«¥Á¥§¥Ã¥¯¤·¤Æ¤¤¤Ê¤¤
  2. ´û¤Ë¡û¡¢¡ß¤¬ÃÖ¤«¤ì¤Æ¤¤¤Æ¤âºÆÅÙÃÖ¤±¤Æ¤·¤Þ¤¦
  3. ½ªÎ»È½Äê¡Ê¾¡¤Á¡¢É餱¡¢°ú¤­Ê¬¤±¡Ë¤¬¤Ê¤¤
¤Ê¤ª¡¢¤³¤Î¥µ¥ó¥×¥ë¥×¥í¥°¥é¥à¤Ï½ªÎ»È½Ä꤬¤Ê¤¤¤Î¤Ç¡¢ ¥×¥í¥°¥é¥à¤Î¼Â¹Ô¤òÄä»ß¤·¤¿¤¤¾ì¹ç¤Ïcontrol-c¤Ç¶¯À©½ªÎ»¤·¤Æ²¼¤µ¤¤¡£

¥ê¥ó¥¯¡§¥µ¥ó¥×¥ë¥×¥í¥°¥é¥à¤ÎÀâÌÀ ¤ò¥¯¥ê¥Ã¥¯




(D-2)
¤³¤ì¤Þ¤Ç¤Ë½¬¤Ã¤¿¹àÌܡʥ롼¥×¡¢È½ÃÇ¡¢Æó¼¡¸µÇÛÎó¡¢¥Þ¥¯¥í¡Ë¤Î¤ß¤Ç²èÁü ¡Ê°Ê²¼¤Î¤è¤¦¤Ê´¶¤¸¡Ë¤òºîÀ®¤¹¤ëÌäÂê¤Ç¤¹¡£

²¼µ­¥ê¥ó¥¯¤ò¥¯¥ê¥Ã¥¯¤·¤ÆÌäÂê¤ò³«¤¤¤Æ¤¯¤À¤µ¤¤¡£
ÌäÂê¤Ï¤³¤³¤ò¥¯¥ê¥Ã¥¯




(D-3)
ÌäÂêD-2¤òȯŸ¤µ¤»¡¢¥Þ¥ó¥Ç¥ë¥Ö¥í½¸¹ç¤ÎÀ­¼Á¤òÍøÍѤ·¤Æ¡¢²èÁü¤òÀ¸À®¤·¤Æ¤ß¤Þ¤¹¡£ ÌäÂêD-2¤òÍý²ò¤·¤¿¤Î¤ßÄ©À路¤Æ¤ß¤Æ¤¯¤À¤µ¤¤¡£
¡Ö¥Þ¥ó¥Ç¥ë¥Ö¥í½¸¹ç¡×(Mandelbrot set)¤È¤Ï¡¢°Ê²¼¤Î¤è¤¦¤ÊÀ­¼Á¤ò¤â¤ÄÊ¿Ì̾å¤ÎÅÀ¤Î½¸¹ç¤Ç¤¹¡£
Ê¿Ì̾å¤ÎŬÅö¤ÊÅÀ¤ÎºÂɸ¤ò(a,b)¤È¤·¤Æ¡¢°Ê²¼¤ÎÁ²²½¼°¤òÄêµÁ¤·¤Þ¤¹¡£



¤³¤ÎÁ²²½¼°¤òi = 0¤«¤é·«¤êÊÖ¤··×»»¤·¤Æ¤¤¤¯ÅÓÃæ¤Ç¡¢ Ri¤¬Ìµ¸ÂÂç¤Ëȯ»¶¤·¤Ê¤¤ÅÀ¤è¤¦¤Ê(a,b)¤Î½¸¤Þ¤ê¤ò¡¢¥Þ¥ó¥Ç¥ë¥Ö¥í½¸¹ç¤È¸Æ¤Ó¤Þ¤¹¡£

Á²²½¼°¤Î·×»»¤ÎÅÓÃæ¤Ç¡¢Ri¤¬4¤è¤êÂ礭¤¯¤Ê¤ë¾ì¹ç¡¢ i¤ò̵¸ÂÂç¤ËÂ礭¤¯¤·¤¿¤È¤­¤Ë¡¢Ri¤¬È¯»¶¤¹¤ë¤³¤È¤¬¤ï¤«¤Ã¤Æ¤¤¤Þ¤¹¡£ ¤è¤Ã¤Æ¡¢¤¢¤ëÅÀ(a,b)¤¬¥Þ¥ó¥Ç¥ë¥Ö¥í½¸¹ç¤Ë°¤·¤Æ¤¤¤ë¤É¤¦¤«¤òÄ´¤Ù¤ë¤Ë¤Ï¡¢ ¾å¤ÎÁ²²½¼°¤ò¥ë¡¼¥×¤Ç·×»»¤·¤Æ¡¢"Ri > 4"¤Î¾ò·ï¤¬Ëþ¤¿¤µ¤ì¤ë¤«¤É¤¦¤«¤òÄ´¤Ù¤ì¤Ð¤è¤¤¤Î¤Ç¤¹¡£

"Ri > 4"¤ò½é¤á¤ÆËþ¤¿¤¹i¤¬¸«¤Ä¤«¤Ã¤¿¤È¤·¤Æ¡¢ ¾®¤µ¤Êi¤Ç¤³¤Î¾ò·ï¤òËþ¤¿¤¹¤è¤¦¤ÊÅÀ(a, b)¤Ïȯ»¶¤¬¡Ö®¤¤¡×¡¢ Â礭¤Êi¤Ç¤³¤Î¾ò·ï¤òËþ¤¿¤¹¤è¤¦¤ÊÅÀ(a, b)¤Ïȯ»¶¤¬¡ÖÃÙ¤¤¡×¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£ ¤³¤Î¡Öȯ»¶¤Î®Å١פ˱þ¤¸¤ÆÅÀ(a,b)¤Ëǻø¤ò¤Ä¤±¤ë¤³¤È¤Ç¡¢°Ê²¼¤Î¤è¤¦¤Ê¤Î²èÁü¤òÀ¸À®¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£




¥Þ¥ó¥Ç¥ë¥Ö¥í½¸¹ç¤Î²èÁü¤òÀ¸À®¤¹¤ë¥×¥í¥°¥é¥à¤Î¤Ò¤Ê·Á:mandel.c
ÊÑ¿ôk¤Î¥ë¡¼¥×¤ÎÆâÉô¤ò´°À®¤µ¤»¤ë¤Î¤¬°ì¤Ä¤á¤Î²ÝÂê¤Ç¤¹¡£

¼Â¹ÔÊýË¡¤Ï°Ê²¼¤ÎÄ̤ê¤Ç¤¹¡£

% gcc mandel.c
% ./a.out | display
¤³¤ì¤Ë¤è¤ê¡¢²èÁü¤¬É½¼¨¤µ¤ì¤Þ¤¹¡£
¾å¤Î²èÁü¤Ï¤½¤ì¤¾¤ì(-2,-1.5)¤È(1, 1.5)¤ò¡¢º¸²¼¤È±¦¾å¤ÎºÂɸ¤È¤·¤¿¾ì¹ç¤Ç¤¹¡£ ¤³¤ÎĹÊý·Á¤ÎÈÏ°ÏÆâ¤Ç¡¢Å¬Åö¤Ê¾ì½ê¤ò³ÈÂ礷¤Æ¤ß¤Æ¤¯¤À¤µ¤¤¡£ ¤â¤·Êݸ¤·¤¿¤¤²èÁü¤¬¸«¤Ä¤«¤Ã¤¿¾ì¹ç¤Ë¤Ï¡¢·×»»Îΰè¤Îº¸²¼¤È±¦¾å¤ÎºÂɸ¤ò°Ê²¼¤Î¤è¤¦¤Ë¡¢ 2¹Ô¤Ë¤ï¤±¤Æ¥Õ¥¡¥¤¥ë¤Ëµ­Ï¿¤·¤Æ¤¯¤À¤µ¤¤¡£
-1.5 -0.3
-0.5 0.8
µ­Ï¿¤·¤¿¥Õ¥¡¥¤¥ë¤ò"input"¤È¤¹¤ë¤È¡¢
% ./a.out < input | display
¤È¤¹¤ë¤³¤È¤Ç¡¢·«¤êÊÖ¤·²èÁü¤òÀ¸À®¤Ç¤­¤Þ¤¹¡£ ¤Þ¤¿¡¢°Ê²¼¤Î¤è¤¦¤Ë¤¹¤ë¤³¤È¤Ç¡¢²èÁü¤ò"image.ppm"¤ËÊݸ¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
% ./a.out < input > image.ppm
% display image.ppm
Æó¤Ä¤á¤Î²ÝÂê¤Ï¡¢²èÁü¤ÎÂ礭¤µ¤äȯ»¶Â®Å٤κÇÂçÃͤòÊѹ¹¤¹¤ë¤³¤È¤Ç¡¢¤É¤¦¤¤¤¦ÊѲ½¤¬¤¢¤ë¤«Ä´¤Ù¤ë¤³¤È¤Ç¤¹¡£ ¤Þ¤¿¡¢¾å¤ÎÁ²²½¼°¤Ç¤Ï¡¢i¤¬0¤Î»þ¤Î(x, y)¤ò(0, 0)¤È¤·¤Æ¤¤¤Þ¤¹¤¬¡¢¤³¤ì¤òÊѲ½¤µ¤»¤Æ¤ß¤ë¤È¡¢ ¤Þ¤¿°Û¤Ê¤Ã¤¿²èÁü¤¬À¸À®¤µ¤ì¤ë¤«¤â¤·¤ì¤Þ¤»¤ó¡£¤â¤·¡¢Èþ¤·¤¤¡Ö¾ì½ê¡×¤òȯ¸«¤·¤¿¤é¡¢¤ªÃΤ餻¤¯¤À¤µ¤¤¡£
Èþ¤·¤¤¾ì½ê¤ÎÎã¡§
-0.153 -0.652
-0.155 -0.654






²¿¤«µ¿Ìä¤ä´Ö°ã¤¤¤¬¤¢¤ì¤Ð°Ê²¼¤ËÏ¢Íí¤·¤Æ²¼¤µ¤¤¡£
¥×¥í¥°¥é¥ß¥ó¥°ÆþÌç±é½¬ÌäÂêôÅö(prog0)